DoS against network services

- Common example: keep legitimate users from viewing a web site
- Easy case: pre-forked server supports 100 simultaneous connections
- Fill them with very very slow downloads

Tiny bit of queueing theory

- Mathematical theory of waiting in line
- Simple case: random arrival, sequential fixed-time service, "M/D/1"
 - M: memoryless arrival process
 - D: deterministic service process
 - 1: one server

Simple queue analysis

- Arrival rate > service rate: queue grows without bound
- Arrival rate < service rate: finite expected queue length
Simple queue analysis
- Arrival rate > service rate: queue grows without bound
- Arrival rate < service rate: finite expected queue length
- Arrival rate = service rate: queue still grows without bound!

SYN flooding
- SYN is first of three packets to set up new connection
- Traditional implementation allocates space for control data
- However much you allow, attacker fills with unfinished connections
- Early limits were very low (10-100)

SYN cookies
- Change server behavior to stateless approach
- Embed small amount of needed information in fields that will be echoed in third packet
 - MAC-like construction
- Other disadvantages, so usual implementations used only under attack

DoS against network links
- Try to use all available bandwidth, crowd out real traffic
- Brute force but still potentially effective
- Baseline attacker power measured by packet sending rate

Traffic multipliers
- Third party networks (not attacker or victim)
- One input packet causes \(n \) output packets
- Commonly, victim's address is forged source, multiple replies
- Misuse of debugging features
“Smurf” broadcast ping

- ICMP echo request with forged source
- Sent to a network broadcast address
- Every recipient sends reply
- Now mostly fixed by disabling this feature

Distributed DoS

- Many attacker machines, one victim
- Easy if you own a botnet
- Impractical to stop bots one-by-one
- May prefer legitimate-looking traffic over weird attacks
 - Main consideration is difficulty to filter

Outline

- Denial of service and the network
- Usability and security
- Announcements intermission
- Usable security example areas
- Bonus: anonymity overlays

Users are not ‘ideal components’

- Frustrates engineers: cannot give users instructions like a computer
 - Closest approximation: military
- Unrealistic expectations are bad for security

Most users are benign and sensible

- On the other hand, you can’t just treat users as adversaries
 - Some level of trust is inevitable
 - Your institution is not a prison
- Also need to take advantage of user common sense and expertise
 - A resource you can’t afford to pass up

Don’t blame users

- “User error” can be the end of a discussion
- This is a poor excuse
- Almost any “user error” could be avoidable with better systems and procedures
Users as rational

- Economic perspective: users have goals and pursue them
 - They're just not necessarily aligned with security
- Ignoring a security practice can be rational if the rewards is greater than the risk

Perspectives from psychology

- Users become habituated to experiences and processes
 - Learn “skill” of clicking OK in dialog boxes
- Heuristic factors affect perception of risk
 - Level of control, salience of examples
- Social pressures can override security rules
 - “Social engineering” attacks

User attention is a resource

- Users have limited attention to devote to security
 - Exaggeration: treat as fixed
- If you waste attention on unimportant things, it won’t be available when you need it
- Fable of the boy who cried wolf

Research: ecological validity

- User behavior with respect to security is hard to study
- Experimental settings are not like real situations
- Subjects often:
 - Have little really at stake
 - Expect experimenters will protect them
 - Do what seems socially acceptable
 - Do what they think the experimenters want

Research: deception and ethics

- Have to be very careful about ethics of experiments with human subjects
 - Enforced by institutional review systems
- When is it acceptable to deceive subjects?
 - Many security problems naturally include deception

Outline

- Denial of service and the network
- Usability and security
- Announcements intermission
- Usable security example areas
- Bonus: anonymity overlays
Upcoming due dates

- Tonight and tomorrow night: Ex. 4, HA2
- Next week: nothing (only one lecture)
- After Thanksgiving: 3rd progress report, presentations

Reminder: VMs are not backed up

- Because of their size, hands-on assignment VMs are on non-backed-up local disks
- Hard disk failure occasionally happens, might destroy your VM
- Keep another copy of your important data elsewhere

Outline

- Denial of service and the network
- Usability and security
- Announcements intermission
- Usable security example areas
- Bonus: anonymity overlays

Email encryption

- Technology became available with PGP in the early 90s
- Still an open “challenge problem”
- Also some other non-UI difficulties: adoption, govt. policy

Phishing

- Attacker sends email appearing to come from an institution you trust
- Links to web site where you type your password, etc.
- *Spear phishing*: individually targeted, can be much more effective

Phishing defenses

- Educate users to pay attention to
 - Spelling → copy from real emails
 - URL → homograph attacks
 - SSL “lock” icon → fake lock icon, or SSL-hosted attack
- Extended validation (green bar) certificates
- Phishing URL blacklists
SSL warnings: prevalence

- Browsers will warn on SSL certificate problems
- In the wild, most are false positives
 - foo.com vs. www.foo.com
 - Recently expired
 - Technical problems with validation
 - Self-signed certificates (HA2)
- Classic warning-fatigue danger

SSL warnings: effectiveness

- Early warnings fared very poorly in lab settings
- Recent browsers have a new generation of designs:
 - Harder to click through mindlessly
 - Persistent storage of exceptions
- Recent telemetry study: they work pretty well
Spam-advertised purchases

- “Replica” Rolex watches, herbal V@gr@, etc.
- This business is clearly unscrupulous; if I pay, will I get anything at all?
- Empirical answer: yes, almost always
 - Not a scam, a black market
 - Importance of credit-card bank relationships

Advance fee fraud

- “Why do Nigerian Scammers say they are from Nigeria?” (Herley, WEIS 2012)
- Short answer: false positives
 - Sending spam is cheap
 - But, luring victims is expensive
 - Scammer wants to minimize victims who respond but ultimately don’t pay

Trusted UI

- Tricky to ask users to make trust decisions based on UI appearance
 - Lock icon in browser, etc.
- Attacking code can draw lookalike indicators
 - Lock favicon
 - Picture-in-picture attack

Smartphone app permissions

- Smartphone OSes have more fine-grained per-application permissions
 - Access to GPS, microphone
 - Access to address book
 - Make calls
- Phone also has more tempting targets
- Users install more apps from small providers

Permissions manifest

- Android approach: present listed of requested permissions at install time
- Can be hard question to answer hypothetically
 - Users may have hard time understanding implications
- User choices seem to put low value on privacy

Time-of-use checks

- iOS approach: for narrower set of permissions, ask on each use
- Proper context makes decisions clearer
- But, have to avoid asking about common things
- iOS app store is also more closely curated
Trusted UI for privileged actions

- Trusted UI works better when asking permission (e.g., Oakland’12)
- Say, “take picture” button in phone app
 - Requested by app
 - Drawn and interpreted by OS
 - OS well positioned to be sure click is real
- Little value to attacker in drawing fake button

Outline

- Denial of service and the network
- Usability and security
- Announcements intermission
- Usable security example areas
- Bonus: anonymity overlays

Traffic analysis

- What can you learn from encrypted data? A lot
- Content size, timing
- Who’s talking to who
 - countermeasure: anonymity

Anonymous remailers

- Anonymizing intermediaries for email
 - First cuts had single points of failure
- Mix and forward messages after receiving a sufficiently-large batch
- Chain together mixes with multiple layers of encryption
- Fancy systems didn’t get critical mass of users

Tor: an overlay network

- Tor (originally from “the onion router”)
 - https://www.torproject.org/
- An anonymous network built on top of the non-anonymous Internet
- Designed to support a wide variety of anonymity use cases

Low-latency TCP applications

- Tor works by proxying TCP streams
 - (And DNS lookups)
- Focuses on achieving interactive latency
 - WWW, but potentially also chat, SSH, etc.
 - Anonymity tradeoffs compared to remailers
Tor Onion routing

- Stream from sender to D forwarded via A, B, and C
 - One Tor circuit made of four TCP hops
- Encrypt packets (512-byte “cells”) as $E_A(B, E_B(C, E_C(D, P)))$
- TLS-like hybrid encryption with “telescoping” path setup

Client perspective

- Install Tor client running in background
- Configure browser to use Tor as proxy
 - Or complete Tor+Proxy+Browser bundle
- Browse web as normal, but a lot slower
 - Also, sometimes google.com is in Swedish

Anonymity loves company

- Diverse user pool needed for anonymity to be meaningful
 - Hypothetical Department of Defense Anonymity Network
- Tor aims to be helpful to a broad range of (sympathetic sounding) potential users

Anti-censorship

- As a web proxy, Tor is useful for getting around blocking
- Unless Tor itself is blocked, as it often is
- *Bridges* are special less-public entry points
- Also, protocol obfuscation arms race (currently behind)

Hidden services

- Tor can be used by servers as well as clients
- Identified by cryptographic key, use special rendezvous protocol
- Servers often present easier attack surface

Intersection attacks

- Suppose you use Tor to update a pseudonymous blog, reveal you live in Minneapolis
- Comcast can tell who in the city was sending to Tor at the moment you post an entry
 - Anonymity set of 1000 \rightarrow reasonable protection
- But if you keep posting, adversary can keep narrowing down the set
Exit sniffing

- Easy mistake to make: log in to an HTTP web site over Tor
- A malicious exit node could now steal your password
- Another reason to always use HTTPS for logins

Browser bundle JS attack

- Tor’s Browser Bundle disables many features try to stop tracking
- But, JavaScript defaults to on:
 - Usability for non-expert users
 - Fingerprinting via NoScript settings
- Was incompatible with Firefox auto-updating
- Many Tor users de-anonymized in August’13 by JS vulnerability patched in June’13