Prime numbers (cryptography)

Password entropy is rarely relevant. The real modern danger is password reuse.

How so?

Password too weak.

Set up a web service to do something simple, like image hosting or tweet syndication, so a few million people set up free accounts.

Bam, you've got a few million emails, default usernames, and passwords.
Announcements

Homework due Thursday

Project group presentations Thursday

“Last midterm” next Tuesday

Project sample/guidelines posted
RSA Encryption

RSA person A has two keys:

$P_A = \text{public key}$

$S_A = \text{secret key (private key)}$

The key is that these functions are inverse, namely for some message M:

$P_A(S_A(M)) = S_A(P_A(M)) = M$
RSA Encryption

Thus, if person B wants to send a secret message to person A, they do:

1. Encrypt the message using public key: \[C = P_A(M) \]
2. Then A can decrypt it using the secret key: \[M = S_A(C) \]
RSA Encryption

If A does not share S_A, no one else knows the proper way to decrypt C

$P_A(P_A(M)) \neq M$

... and ...

S_A not easily computable from P_A

(more on this next week)
RSA Encryption

RSA algorithm:
1. Select two large primes p, q ($p \neq q$)
2. Let $n = p \times q$
3. Let e be: $\text{gcd}(e, (p - 1)(q - 1)) = 1$
4. Let d be: $e \times d \mod (p-1)(q-1) = 1$
 (use “extended euclidean” in book)
5. Public key: $P = (e, n)$
6. Secret key: $S = (d, n)$
RSA Encryption

Specifically:

\[P_A(M) = M^e \mod n \]

\[S_A(C) = C^d \mod n \]

A key assumption is that \(M < n \), as we want:

\[M \mod n = M \]

Pick large p, q or encode per byte
Example: $p=7$, $q=11\ldots n = p*q = 77$

$e=13$ (does not need to be prime) as $\gcd(13,(7-1)(11-1))=\gcd(13,60) = 1$

d$=37$ as $13*37$ mod 60 = 1

If $M = 20$ (a byte), then $C = 20^{13}$ mod 77 = 69
$C = 71$, 71^{37} mod 77 = 20
RSA Encryption + CRT

Computing large powers can require a lot of processor power

Can more efficiently get the result with Chinese remainder theorem: (backwards)
Have: number mod product
Want: smaller system of equations
RSA Encryption + CRT

Using CRT:

\[m_1 = C^{d \mod p^{-1}} \mod p \quad // \text{less compute} \]

\[m_2 = C^{d \mod q^{-1}} \mod q \quad // \text{much smaller} \]

\[qI = q^{-1} \mod p \]

\[h = qI \times (m_1 - m_2) \]

\[m = m_2 + h \times q \]

(see: rsa.cpp)
Primes

RSA (and many other applications) require large prime numbers

We need to find these efficiently (not brute force!)

The common methods are actually probabilistic (no guarantee)
First, are there actually large primes?

Density of primes around x is about $1/\ln(x)$ (i.e. 3 per 100 when $x=10^{10}$).
Prime finding

To find them, we just make a smart guess then check if it really is prime

Smart guess:
last digit not: 2, 4, 5, 6, 8 or 0

This eliminates 60% of numbers!
Both of these methods use Fermat's theorem, for a prime p:

\[a^{p-1} \mod p = 1, \forall a \in \mathbb{Z} \]

So we simply check if:

\[2^{p-1} \mod p == 1 \]

If this is, probably prime
Prime finding

This simplistic method works surprisingly well:

Error rate less than 0.2%
(if around 512 bit range, 1 in 10^{20})

Has two major issues:

1. More accurate for large numbers
2. Carmichael numbers (e.g. 561, rare)
Prime finding

Computation time also goes up with number size

Carmichael numbers are composite, but have: $a^{p-1} \mod p = 1$ for all a

These are quite rare though (only 255 less than 100,000,000)
Miller-Rabin primality test

Again, we will basically test Fermat's theorem but with a twist

We let: $n-1 = u \cdot 2^t$, for some u and t

Then compute: $a^{n-1} \mod n = 1$

As: $a^{u \cdot 2^t} \mod n = 1$

(more efficient, as we can square it)
Miller-Rabin primality test

\textbf{Witness}(a, n)
find \((t,u)\) such that \(t \geq 1\) and \(n-1 = u \cdot 2^t\)

\(x_0 = a^u \mod n\)

for \(i = 1\) to \(t\)
 \(x_i = x_{i-1}^2 \mod n\)
 if \(x_i = 1\) and \(x_{i-1} \neq 1\) and \(x_{i-1} \neq n-1\)
 return true
 if \(x_i \neq 1\)
 return true
return false
Miller-Rabin primality test

If Witness returns true, the number is composite.

If Witness returns false, there is a 50% probability that it is a prime.

Thus testing “s” different values of “a” (range 0 to n-1) gives error 2^{-s}.
Composites

To find composites of n takes (we think) $O(\sqrt{n})$

This is the same asymptotic running time as brute force

(i.e. $n \% 2 == 0$, $n \% 3 == 0$, ...)
Composites

Many security systems depend on the fact that factoring numbers is (we think) a hard problem.

In RSA, if you could factor n into p and q, anyone can get private key.

However, no one has been able to prove that this is hard.
Composites

The book does give an algorithm to compute composites

Similar to security hashing: (finding hash collision)

Still $O(\sqrt{n})$ (smaller coefficient)
CRT vs. interpolation

There is actually some similarity between the CRT and interpolation.

Both of them find a partial answer that simply modifies one sub-problem.

Then combines these partial answers.
CRT vs. interpolation

Find polynomial given 3 points: (0,1), (1, 4), (2, 4)

\((x-0)(x-1)\) is zero on \(x=0,1\) (first 2)
\(2(x-0)(x-1)\) is correct for last \(x=2\)

Combine by adding up a polynomial for each point (not effecting others)
CRT vs. interpolation

Solve k systems of linear modular equations
\(x \mod n_1 = a_1, \ x \mod n_2 = a_2, \ldots \ x \mod n_k = a_k \)

If \(n = n_1 \times n_2 \times \ldots \times n_k \), and \(m_i = n/n_i \), then \(m_i \) has no effect on \(x \mod n_j \) for any \(j \) except \(i \) (as \(n_j \mid m_i \))

So we find \(c_i \) such that \(c_i m_i = x \pmod{n_i} \)

Then add these terms together (not effect other)