Exam #1

• Closed book
• Mix of short answer ~ 40%
• Mid range ~ 20%
• Longer ~ 20%
Exam #1 Topics

• Kernel and Processes
• Threads and Concurrency
• Synchronization
• Multi-object synchronization
• Scheduling
• Address Translation
• Virtual Memory
Exam #1

• What to study?
 – Your notes!
 – Skim book chapters: focus on sections we talked about in class – ignore topics we did not cover
 – Do not need to memorize minor code details

• How to study?
 – Look at homework questions in the book
 – Look at exercises in the book
Exam #1 Content

• Short question examples:
 – contrast kernel threads with user threads – list pros of each.
 – why is reader-writer synchronization unfair?
 • How could you make it fair?
 – What is the key insight behind the MCS protocol?
 – RCU protocol?
 – Contrast hoare and mesa semantics for CVs?
Exam #1 Content

• Medium
 – Given a paging, segmentation, or multi-level AT, translate this VA to a PA

 – Given this job arrival pattern: compare scheduling algorithms

 – Use little law to do some simple queueing analysis

 – Explain the code fragment within a lock implementation discussed in class
Exam #1 Content

• Longer
 – Analyze this code for safety, progress, deadlock

• Given a memory access pattern
 – Analyze behavior of various page replacement strategies
Lab #3

- Lab #3
- We have built a user-level UNIX-like file system that is a good mirror of what a kernel-level file system would contain
- Understand a heap of code and add features
Lab #3

• Steps
 – Run it
 – Understand how it works: add `printfs` as needed
 – Start small
 • link, unlink
 • fsck
 • indirect blocks
 – Does not support relative paths
 – Few other glitches
 – May be others, let us know ASAP