CSci 5103
Operating Systems

Jon Weissman

The Landscape at 50K feet
OSPP Chap. 2
Announcements

• Kindle version of the book
 – $32 approximately

• UNITE is providing audio podcasts of the lectures (obviously merge with ppt but will not get you any board work)
Referee

• Share or multiplex resources

• Space share
 – Parallel computer containing 64 processors
 – 4 jobs each using 16 processors can run together

• Time share
A First Look at Some Key Concepts: #1

• **kernel**
 - The software component that controls the hardware directly, and implements the core privileged OS functions.
 - Modern hardware has features that allow the OS kernel to protect itself from untrusted user code.
 - User code can invoke the kernel only at well-defined entry points – what are those?
Kernel

• Different OS organizations
• Microkernel
 – Small kernel, rest of OS possibly in user-space
 – Mostly research systems: Mach, Amoeba, Minix
 – Some mobile OS: symbian, blackberry
• Monolithic
 – Everything is in OS domain
 – Linux, Windows
 – Many try to isolate a “kernel” to be the machine-dependent interface code
Key Concept #2

thread

• An executing stream of instructions and its CPU register context.

• Hardware may directly support threads – *hyper-threading* (each core has two separate architectural contexts), x86 has this mode.

• Generally, hardware is unaware of threads, and the OS/user libraries must provide it.
More on threads

• A thread is *schedulable*
 • it runs on a CPU core
 • defined by CPU register values (PC, SP)
 • *suspend*: save register values in memory
 • *resume*: restore registers from memory

• Multiple threads can execute independently
 • They can run in parallel on multiple CPUs...
 – *physical concurrency*
 • ...or arbitrarily interleaved on a single CPU
 – *logical concurrency*

• Each thread must have its own stack
Key Concepts #3 and #4

virtual address space

- An execution context for threads/processes that provides an independent name space for addressing code and data

process

- An execution of a program, consisting of a virtual address space, one or more threads, other resources, some OS kernel state. Unit of isolation!
Memory and the CPU

What is different between red and blue?
The Kernel

– The kernel code is “shared” by all user programs, but the kernel is protected:

 • User code cannot access internal kernel data structures directly
 • Think: object-oriented methods
 – Cannot access private variables and methods, only public ones
 • Hardware maintains mode bits to track whether kernel or user code is executing
A Protected Kernel

What about program A -> Program B or B’s data?
Turning to Hardware (Briefly)

• How does the OS interact with the external devices?
 – I/O Structure
 – Storage Structure
 – Each device controller is in charge of a particular device type
 – OS has special code to communicate with controllers
 – ?
Device Drivers

- Device drivers ... (i.e. glue)
 - Most of the OS code is device drivers
 - Assembly or mix of assembly and C generally
 - Contains special I/O instructions

- Today, dynamically load device drivers into the OS
 - Why is this critical?
 - What is the problem with device drivers?
I/O

• User code cannot issue I/O instructions directly – Why?
• System call – the method used by a program to request action by the operating system
• Usually takes the form of a trap to a specific location in the kernel code
I/O Operation

• I/O devices and the CPU can execute concurrently
• How does device controller inform CPU that it has finished?
• CPU moves data from/to RAM to the device
 – With DMA, CPU just initiates, DMA controller can access RAM <-> device
Interrupts: Key Ideas

• Interrupts transfer control to an interrupt service routine in the kernel

• A **trap** is a software-generated “interrupt” caused either by an error or a user request

• **Q:** What is meant by a user request?

• An operating system is *interrupt* driven.

• **Why?** What is the alternative (suppose devices didn’t raise interrupts)?
I/O Structure

• I/O types
 – Asynchronous
 • After I/O starts, control returns to kernel without waiting for I/O completion
 • Get an interrupt or notification when finished
 – Synchronous
 • CPU idles until I/O is ready (one I/O at a time)

– API: synchronous I/O (built on asynchronous kernel I/O)
– API: asynchronous I/O
Storage-Device Hierarchy

- registers
- cache
- main memory
- electronic disk
- magnetic disk
- optical disk
- magnetic tapes

Why this line?
Storage Issues

• Latency
 – Crossing the bus
 – Controller logic
 – Mechanical operations (HDD): very high

• Throughput
 – Sustained performance
Storage

• Memory is a large array of bytes, each with its own address. It contains **rapidly** accessible data shared by the CPU and I/O devices.

• Main memory is a **volatile** storage device. It loses its contents in the case of system failure, power-down. Though this may be changing ...

• Since main memory (*primary storage*) is volatile and too small to accommodate all data and programs **permanently**, the computer system must provide **secondary storage** to “back up” main memory.
Common OS System Components – 50K feet

- Process Management
- Main Memory Management
- Secondary-Storage Management
- I/O System Management
- File Management
Process Management

• A *process* is a program in execution. A process needs certain resources, including:
 – CPU, memory, files, access to I/O devices, to accomplish its task.

• The operating system is responsible for the following activities in connection with process management.
 – Process creation and deletion
 – Process suspension and resumption
 – Process communication and synchronization
 – Process scheduling
 – Bookkeeping: accounting
Main-Memory Management

• The operating system is responsible for the following activities in connection with memory management:
Secondary-Storage Management

• The operating system is responsible for the following activities in connection with disk management:
I/O and File System Management

• The I/O system consists of:
 – Device-drivers
 – A buffer-caching system

• A file is a collection of related information defined by its creator. Commonly, files represent programs and data.

• The operating system is responsible for the following activities in connections with file management:
 – File/Directory creation, deletion, access, protection
Next Week

• The Kernel
• Read Chap. 2 OSPP, 3 OSPP (skim – refresh)
• HW #1 out on Thursday

Have a great weekend!