Topics for This Week

• Routing Protocols in the Internet
 – OSPF, BGP

• More on IP
 – Fragmentation and Reassembly
 – ICMP

• Readings
 – Sections 5.6.4-5.6.5
Hierarchical Routing

• aggregate routers into regions, “autonomous systems” (AS)
• routers in same AS run same routing protocol
 – “intra-AS” routing protocol
 – routers in different AS can run different intra-AS routing protocol

gateway routers

• special routers in AS
• run intra-AS routing protocol with all other routers in AS
• *also* responsible for routing to destinations outside AS
 – run *inter-AS routing* protocol with other gateway routers
Intra-AS and Inter-AS routing

Gateways:
- perform inter-AS routing amongst themselves
- perform intra-AS routing with other routers in their AS

Inter-AS, intra-AS routing in gateway A.c

Routing Table

- network layer
- link layer
- physical layer
Intra-AS and Inter-AS routing

Inter-AS routing between A and B

Intra-AS routing within AS A

Intra-AS and Inter-AS routing

Host h1

Host h2

A

B

A.a

A.c

B.a

C.b

C

Intra-AS routing within AS B
Why different Intra- and Inter-AS routing?

Policy:
• Inter-AS: admin wants control over how its traffic routed, who routes through its net.
• Intra-AS: single admin, so no policy decisions needed

Scale:
• hierarchical routing saves table size, reduced update traffic

Performance:
• Intra-AS: can focus on performance
• Inter-AS: policy may dominate over performance
Intra-AS Routing (stop)

• Also known as Interior Gateway Protocols (IGP)
• Most common IGPs:
 – RIP: Routing Information Protocol
 – OSPF: Open Shortest Path First
 – IGRP: Interior Gateway Routing Protocol (Cisco proprietary)
RIP (Routing Information Protocol)

- Distance vector algorithm
- Included in BSD-UNIX Distribution in 1982
- Distance metric: # of hops (max = 15 hops)
 - Can you guess why?

- Distance vectors: exchanged every 30 sec via Response Message (also called advertisement)
- Each advertisement: route to up to 25 destination nets
RIP: Link Failure and Recovery

If no advertisement heard after 180 sec → neighbor/link declared dead

– routes via neighbor invalidated
– new advertisements sent to neighbors
– neighbors in turn send out new advertisements (if tables changed)
– link failure info quickly propagates to entire net
– poison reverse used to prevent ping-pong loops (infinite distance = 16 hops)
RIP Table processing

• RIP routing tables managed by application-level process called routed (daemon)
• advertisements sent in UDP packets, periodically repeated
OSPF (Open Shortest Path First)

- “open”: publicly available
 - Gated
- Uses Link State algorithm
 - LS packet dissemination
 - Topology map at each node
 - Route computation using Dijkstra’s algorithm
- OSPF advertisement carries one entry per neighbor router
- Advertisements disseminated to entire AS (via flooding)
Neighbor Discovery and Maintenance

- OSPF Hello protocol
- Sends Hello packets on all its interfaces
 - Every Hello Interval (default 10 sec)
- Helps detect the failure of neighbors
- Neighbor is designated as failed
 - If no Hello for Dead Interval (40 sec)
OSPF “advanced” features (not in RIP)

• **Security**: all OSPF messages authenticated (to prevent malicious intrusion);
• **Multiple same-cost paths** allowed (only one path in RIP)
• For each link, multiple cost metrics for different TOS (eg, satellite link cost set “low” for best effort; high for real time)
• Integrated uni- and **multicast** support:
 – Multicast OSPF (MOSPF) uses same topology data base as OSPF
• **Hierarchical OSPF** in large domains.
Inter-AS routing
Internet Inter-AS routing: BGP

• **BGP (Border Gateway Protocol):** *the de facto* standard

• **Path Vector** protocol:
 – similar to Distance Vector protocol
 – each Border Gateway broadcast to neighbors (peers) *entire path* (I.e, sequence of ASs) to destination
 – E.g., Gateway X may send its path to dest. Z:

\[
\text{Path } (X,Z) = X,Y_1,Y_2,Y_3,\ldots,Z
\]
Internet Inter-AS routing: BGP

Suppose: gateway X send its path to peer gateway W

- W may or may not select path offered by X
 - cost, policy (don’t route via competitors AS), loop prevention reasons.
- If W selects path advertised by X, then:
 \[
 \text{Path (W,Z)} = W, \text{ Path (X,Z)}
 \]
- Note: X can control incoming traffic by controlling its route advertisements to peers:
 - e.g., don’t want to route traffic to Z \(\rightarrow\) don’t advertise any routes to Z
Internet Inter-AS routing: BGP

- BGP messages exchanged using TCP.
- BGP messages:
 - **OPEN**: opens TCP connection to peer and authenticates sender
 - **UPDATE**: advertises new path (or withdraws old)
 - **KEEPALIVE** keeps connection alive in absence of UPDATES; also ACKs OPEN request
 - **NOTIFICATION**: reports errors in previous msg; also used to close connection
The Internet Network layer

- Routing protocols
 - path selection
 - RIP, OSPF, BGP

- IP protocol
 - addressing conventions
 - datagram format
 - packet handling conventions

- ICMP protocol
 - error reporting
 - router "signaling"

- Transport layer: TCP, UDP

- Network layer

- Link layer

- physical layer
More on IP
IP Packet Format

<table>
<thead>
<tr>
<th>Field</th>
<th>Bit Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version (VERS)</td>
<td>0</td>
</tr>
<tr>
<td>Header Length (H. LEN)</td>
<td>4</td>
</tr>
<tr>
<td>Service Type</td>
<td>8</td>
</tr>
<tr>
<td>Protocol Type</td>
<td>16</td>
</tr>
<tr>
<td>Total Length</td>
<td>19</td>
</tr>
<tr>
<td>Identification</td>
<td>24</td>
</tr>
<tr>
<td>Flags</td>
<td>31</td>
</tr>
<tr>
<td>Fragment Offset</td>
<td>0</td>
</tr>
<tr>
<td>Time to Live</td>
<td>4</td>
</tr>
<tr>
<td>Type</td>
<td>8</td>
</tr>
<tr>
<td>Header Checksum</td>
<td>16</td>
</tr>
<tr>
<td>Source IP Address</td>
<td>19</td>
</tr>
<tr>
<td>Destination IP Address</td>
<td>24</td>
</tr>
<tr>
<td>Option (if any)</td>
<td>31</td>
</tr>
<tr>
<td>Padding</td>
<td>0</td>
</tr>
<tr>
<td>Beginning of Data</td>
<td>4</td>
</tr>
<tr>
<td>Data</td>
<td>8</td>
</tr>
</tbody>
</table>
Fields in IP Packet

• IP protocol version
 – Current version is 4

• Header length
 – Number of 32-bit quantities in the header

• Type of Service
 – 3-bit Priority
 – Delay, Throughput, Reliability bits

• Total length
 – Including header (maximum 65535 bytes)
Fields in IP Packet

• Identification
 – All fragments of a packet have same identification
• Flags
 – Don’t Fragment, More Fragments
• Fragment offset
 – Where in the original packet (count in 8 byte units)
• Time to live
 – Life time of packet
• Protocol Type
 – TCP, UDP etc
IP Fragmentation & Reassembly

• Each subnet has its own MTU size
 – Maximum Transmission Unit

• An IP packet is chopped into smaller pieces if
 – Packet size is greater than network MTU
 – Don’t fragment option is not set

• Each datagram has unique identification
 – All fragments carry original datagram id

• All fragments except the last have more flag set
IP Fragmentation & Reassembly

- Datagram assembly done only at destination
 - Why not at a router?
- Use datagram id to put pieces together
 - The last piece indicated with more bit 0
 - Offset plus the length tell whether any
 - Holes missing in the middle
- Setup a reassembly timer after first fragment
 - If all pieces in time, pass the pkt to upper layer
 - If some do not arrive in time, discard the fragments
- No recovery from lost fragments (why?)
IP Fragmentation & Reassembly

• large IP datagram fragmented within net
 – one datagram becomes several datagrams
 – “reassembled” only at final destination
 – IP header bits used to identify, order related fragments
IP Fragmentation and Reassembly

One large datagram becomes several smaller datagrams

length =4000	ID =x	moreflag =0	offset =0
length =1500	ID =x	moreflag =1	offset =0
length =1500	ID =x	moreflag =1	offset =1480
length =1040	ID =x	moreflag =0	offset =2960
Fragmentation Example
Internet Control Message Protocol

• An error reporting mechanism
 – Time exceeded
 • Packet discarded because TTL was 0
 – Destination unreachable
 • Router cannot locate destination
 – Source quench
 • Buffer overflow, request source to reduce rate
 – Redirect
 • Suggest a better router
ICMP Message Transport

- ICMP messages carried in IP datagrams
- Treated like any other datagram
 - But no error message sent if
 - ICMP message causes error
- Message sent to the source
 - 8 bytes of the original header included
ICMP Usage

• Testing reachability
 – ICMP echo request/reply
 – ping

• Tracing route to a destination
 – Time-to-live field
 – Traceroute

• Path MTU discovery
 – Don’t fragment bit
Protocol Configuration

• Items to be configured
 – IP address
 – Default router address
 – Subnet mask
 – DNS server address

• Reverse Address Resolution Protocol (RARP)
• ICMP address mask request and router discovery
• Bootstrap protocol (BOOTP)
IP addresses: how to get one?

- Hard-coded by system admin in a file
- **Dynamic Host Configuration Protocol**
 - dynamically get address: “plug-and-play”
 - host broadcasts “**DHCP discover**” msg
 - DHCP server responds with “**DHCP offer**” msg
 - host requests IP address: “**DHCP request**” msg
 - DHCP server sends address: “**DHCP ack**” msg
Network Layer Summary

• Network service
 – datagram vs virtual circuit

• Routing protocols
 – Link state and distance vector
 – RIP, OSPF, PGP

• Case studies
 – ATM, IPv4
Hierarchical OSPF
Hierarchical OSPF

- **Two-level hierarchy**: local area, backbone.
 - Link-state advertisements only in area
 - Each node has detailed area topology; only know direction (shortest path) to nets in other areas.
- **Area border routers**: “summarize” distances to nets in own area, advertise to other Area Border routers.
- **Backbone routers**: run OSPF routing limited to backbone.
- **Boundary routers**: connect to other ASs.
Traceroute yahoo.com

1 rsfc-v15.eswitch.umn.edu (128.101.35.253)
2 192.168.99.30 (192.168.99.30)
3 tc3x.router.umn.edu (160.94.26.70)
4 tc2x.router.umn.edu (160.94.26.98)
5 otr-tc2.northernlights.gigapop.net (192.42.152.134)
6 otr-onvoy.northernlights.gigapop.net (192.42.152.14)
7 core1-ge1-1-0.msc.mr.net (137.192.3.254)
Traceroute yahoo.com

8 p4-0.chcgil1-cr1.bbnplanet.net (4.24.149.97)
9 p5-0.chcgil1-br1.bbnplanet.net (4.24.5.241)
10 so-3-0-0.chcgil2-br1.bbnplanet.net (4.24.9.69)
11 p1-0.chcgil2-cr1.bbnplanet.net (4.24.7.134)
12 pos1-2.core1.Chicago1.Level3.net
 (209.0.225.33)
13 so-4-0-0.mp2.Chicago1.Level3.net
 (209.247.10.169)
Traceroute yahoo.com

14 so-3-0-0.mp1.SanJose1.Level3.net
 (64.159.1.129)
15 gigabitethernet9-2.ipcolo4.SanJose1.Level3.net
 (64.159.2.138)
16 ***
17 ge-3-3-0.msr1.pao.yahoo.com (216.115.101.42)
18 vlan29.bas2-m.snv.yahoo.com
 (216.115.100.126)
19 w9.snv.yahoo.com (216.115.102.81)