This exam contains 10 pages (including this cover page) and 5 questions. Once we tell you to start, please check that no pages are missing.

Before starting the exam, you can fill out your name and other information of this page, but don’t open the exam until you are directed to start. Don’t put any of your answers on this page.

You may use any textbooks, notes, or printouts you wish during the exam, but you may not use any electronic device: no calculators, smart phones, laptops, etc. You may ask clarifying questions of the instructor or TAs, but no communication with other students is allowed during the exam.

Please read all questions carefully before answering them. Remember, we can only grade what you write on the exam, so it’s in your interest to show your work and explain your thinking.

By signing below you certify that you agree to follow the rules of the exam, and that the answers on this exam are your own work only.

The exam will end promptly at 2:15pm. Good luck!

Your name (print):

Your UMN email/ID: @umn.edu

Number of rows ahead of you: Number of seats to your left:

Sign and date:

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
1. Your consulting firm Tesseract Security Solutions had been hired to configure a multilevel-secure classification and access control system for the intelligence agency of a small, landlocked nation. You and a coworker are designing a lattice model for the project. The nation has three levels of classification, named “Unclassified”, “Secret”, and “Top Secret” and abbreviated U, S, and TS respectively. There are also three specialized compartments for clandestine projects codenamed APPLEBUTTER, BLINDSIDE, and CRAYOLA (abbreviated A, B, and C). A co-worker got most of the way through drawing a diagram of the lattice, but then some of his work was lost when he spilled coffee on the paper. (The diagram is on the next page, and rotated 90 degrees to fit on the page.)

(a) (5 points) Fill in the correct labels on the five points in the lattice which are missing labels (shown with a dashed outline).

(b) (5 points) Carol is an intelligence analyst cleared to the Secret level, with access to the APPLEBUTTER and CRAYOLA compartments; the corresponding point in the lattice is shown with a bold outline. Label with an “R” all the points in the lattice from which Carol can read information under a BLP policy, and label with a “W” all the points she can write to.

(c) (5 points) The intelligence agency is considering starting five new projects to be code-named DANCEHALL, EXCELSIOR, FACEPAINT, GALOSHES, and HEXDUMP. If you add new compartments for these new projects in addition to the existing ones, how many total points will be in the resulting lattice?
2. (20 points) Matching definitions and concepts. Fill in each blank with the letter of the corresponding answer. Each answer is used exactly once.

(a) ___ Situation whose result depends on which of two parallel actions happens first

(b) ___ Attacker-supplied instructions implementing malicious functionality

(c) ___ A component whose failure could violate your security

(d) ___ Code that can run correctly at any memory location

(e) ___ Unintended means of conveying information

(f) ___ System call used for system call interposition

(g) ___ A value whose overwrite signals an attack

(h) ___ System call enabling a restricted file system

(i) ___ Secret data should not flow to public sinks

(j) ___ The power to take security-relevant actions

(k) ___ Behaving less safely because of a safety mechanism

(l) ___ What marketing means when they say “trusted”

(m) ___ Capable of simulating any program

(n) ___ Security token that both designates a resource and provides authority to access it

(o) ___ Long instruction sequence leading to shellcode

(p) ___ Random but not secret value added to a password hash

(q) ___ Lack of connection between two networks

(r) ___ Frame pointer

(s) ___ Untrusted data should not flow to critical sinks

(t) ___ Partial order with \(\sqcup\) and \(\sqcap\)

A. Air gap B. Canary C. Capability D. \texttt{chroot} E. Confidentiality F. Covert channel G. \texttt{\%ebp} H. Integrity I. Lattice J. NOP sled K. PIC/PIE L. Privilege
M. \texttt{ptrace} N. Race condition O. Risk compensation P. Salt Q. Shellcode
R. Trusted S. Trustworthy T. Turing complete
3. (20 points) Multiple choice. Circle the letter of the correct answer.

(a) This biometric authentication technique has low error rates when performed by a computer, but can’t be checked by a person:
 A. Iris codes B. Fingernail length C. Signature matching D. Fingerprints E. Voice recognition

(b) What’s “common” about the Common Criteria?
 A. Every kind of product is evaluated against the same “protection profile”.
 B. Anyone can perform the certification, without special government approval.
 C. The certification applies to devices used in everyday civilian life, rather than in government or the military.
 D. A single certification is recognized by the governments of many countries.
 E. A single certification can be used for products from different vendors.

(c) Suppose a biometric authentication system has an equal error rate of 5%. Which of these is not also the case?
 A. The system will always have a lower false-positive rate than allowing users based on a random coin flip with allow probability 5%.
 B. If you configure the system to have less than 3% false negatives, the rate of false positives is at least 5%.
 C. There is no way to configure the system to simultaneously have no false negatives and no false positives.
 D. If you configure the system to have less than 5% false positives, the rate of false negatives must be 5% or more.
 E. By setting the confidence threshold appropriately, we can get false-positive and false-negative rates that are both 5%.

(d) Which of these systems does not use primarily capabilities for access control?
 A. The Joe-E programming language
 B. The Caja programming language
 C. The seL4 microkernel
 D. The KeyKOS operating system
 E. The SELinux operating system

(e) In the CFI paper, legal jump targets are identified by a special 32-bit value. Which special property must that value have?
 A. It must be a palindrome (same big-endian as little-endian)
 B. It must not contain any 0 bytes
 C. It must be greater than the largest code address
 D. It must not be a legal x86 instruction
 E. It must not appear elsewhere in the program code
(f) Which one of these functions can never overflow a buffer?
A. strcpy B. sprintf C. printf D. strlcpy E. strncpy

(g) According to the C standard, which of these might be true of the execution of a program with undefined behavior?
A. It could appear to run normally, but with some security checks bypassed
B. It could print an error message
C. It could terminate without an error message
D. It could have a segfault
E. All of the above

(h) This pair of functions, mentioned in the StackGuard paper, have a behavior like a function pointer that makes them valuable to code-injection attackers:
A. read/write
B. setjmp/longjmp
C. chmod/chown
D. printf/scanf
E. getuid/setuid

(i) In a system enforcing a W⊕X policy, which of the following areas could be executable?
A. The read-only data area
B. The BSS area (.bss)
C. The heap
D. The initialized data (.data) area
E. The stack

(j) Which of these equations does not have a solution, if the operations are performed using 32-bit unsigned ints?
A. \(x + 1 < x \)
B. \(2 \cdot x = 1 \)
C. \(13 \cdot x = 10 \)
D. \(2 \cdot x = 10 \)
E. \(2 \cdot x < x \)
4. (25 points) Non-defensive programming. The following C function was not written defensively: if it’s supplied with unusual input, various bad things can happen. There are two ways of thinking about these problems: you can consider them coding mistakes in this function, or you can consider them preconditions of this function that need to be documented so that the rest of the program can use it safely.

Find and explain three such problems with this function. Pick the three most serious problems you can find: we’re looking for the sorts of problems that could be exploitable if the arguments to the function were controlled by an attacker (though you don’t need to construct such an attack for this question).

For each problem we want four pieces of information. List the line number(s) on which the problem occurs. Give a precondition, a description of the what property well-formed input should have to avoid the problem. Describe the coding mistake and consequences: what did the programmer do wrong (or at least non-defensively) and what bad outcome can occur? Finally, describe how to fix the coding mistake.

```c
struct piece { int row; int col; char *symbol; };
struct piece *pieces = 0;

struct square { char *description; /* ... */ };  
struct square board[8][8];

/* Place a bunch of pieces on the board. */
int load_pieces(struct piece *p, int num_pieces) {
    int i;
    pieces = malloc(num_pieces * sizeof(struct piece));
    if (!pieces) {
        fprintf(stderr, "Allocation failed!\n");
        return 0;
    }
    for (i = 0; i < num_pieces; i++) {
        char buf[20];
        int r = p[i].row, c = p[i].col;
        if (r >= 8 || c >= 8) {
            fprintf(stderr, "Position out of range!\n");
            return 0;
        }
        sprintf(buf, "%d x %d: %s", r, c, p[i].symbol);
        board[r][c].description = strdup(buf);
        pieces[i] = p[i];
    }
    return 1; /* Success */
}
```
(a) Problem 1. Line number(s):
 Precondition:

 Coding mistake and consequences:

 How to fix:

(b) Problem 2. Line number(s):
 Precondition:

 Coding mistake and consequences:

 How to fix:

(c) Problem 3. Line number(s):
 Precondition:

 Coding mistake and consequences:

 How to fix:
5. (20 points) Return-oriented shellcoding. As part of a larger attack, you need to use ROP to create some code to call the Linux `mprotect` system call and disable W+X protection on the rest of your shellcode. In particular you’ve figured out that the call you want to make would look like:

\[
\text{mprotect}(\text{stack_pointer} - 10000, 20000, \text{PROT_WRITE}|\text{PROT_EXEC});
\]

if you could write it in C. (stack_pointer can be the value of %esp at any point in the shellcode, since the margin of 10000 bytes on either side is enough to take care of any minor variation.)

Looking up in the appropriate header files, you’ve also discovered that `mprotect` is system call number 125, and that the numeric value of the protection flags is 2 \| 4 = 6. According to the Linux system call calling conventions, you need to put the system call number in %eax, put the three arguments in the registers %ebx, %ecx, and %edx respectively, and then execute the instruction \text{int 0x80}.

You’ve also found a number of useful-looking gadgets, which are shown on the right side of the next page. Your job is to fill in the return-oriented program on the picture of the stack shown on the left side of the next page, starting from the “top” of the stack at the bottom of the page. Each space on the stack represents a 32-bit value. You can fill it in with a fixed number by writing the number in the box, or you can make it a pointer to a gadget by writing the letter of the gadget in the box. (When drawing these diagrams in the past we’ve drawn an arrow from the box to the gadget, but letters should be easier to read.) You can use each gadget as many or as few times as you would like: our solution uses all of them, some several times.

Hint: plan carefully the order in which you fill in the registers, since some operations can only be done using certain registers for intermediate values.

It’s possible to achieve your goal using only the gadgets shown, and without using all the stack spaces we’ve drawn for you. But if you can’t figure out how, you can earn partial credit with a solution in which you invent new gadgets (write them below the ones we put there with their own letters). But you’ll lose one point for each instruction in a new gadget you use.

We’ve written the x86 instructions in AT&T syntax, so the result operands are on the end. For instance \text{mov x, y} is like \text{y = x}, and \text{add x, y} is like \text{y += x}.

Page 9
A. `int 0x80; ret`

B. `mov %esp, %ebx; ret`

C. `add %ebx, %eax; ret`

D. `mov %ecx, %eax; ret`

E. `pop %ecx; ret`

F. `mov %eax, %ebx; ret`

G. `mov %eax, %edx; ret`

Initial %esp

top of stack