Kinds of Internet payments

- Credit/debit cards: most popular
 - Wide adoption among consumers, little consumer fraud liability
 - Restrictive merchant procedures
- PayPal
 - Easier to accept payments
 - Centrally managed to deal with fraud

One ideal: electronic cash

- Direct transactions without third party
- No transaction fees
- Potentially anonymous
- Non-revocable: buyer bears fraud risk

Micropayments

- Claim: what the web needs is small payments to support content
 - Too small for existing mechanisms
- One idea (Peppercoin): simulate small payment with small probability of larger payment
- Actual market for micropayments has been small
 - Most buyers and sellers prefer free + other revenue

Blinded signatures

- Sign something without knowing its value
 - Often used together with randomized auditing
 - For RSA, multiply message by \(r^e \), \(r \) random
- Allows a bank to “mint” coins that can still be anonymous
Challenge: double spending

- Any purely electronic data can be duplicated, including electronic money
- Can’t allow two copies to both be spent
- Shows ideal no-third-party e-cash can’t be possible

Puzzles / proof-of-work

- Computational problem you solve to show you spent some effort
- Common: choose \(s \) so that \(h(m || s) \) starts with many 0 bits
- For instance, required solved puzzles can be a countermeasure against DoS

Hashcash and spam

- Idea: use proof of work to solve email spam problem
- Puzzle based on date and recipient
- Legitimate users send only a few messages
 - Problem 1: mailing lists
 - Problem 2: spam botnets
- Never caught on

Hash trees and timestamp services

- Merkle tree: parent node includes hash of children
- Good hash function → root determines whole tree
- Can prove value of leaf with log-sized evidence
- Application: document timestamping (commitment) service

Outline

- Previous e-cash and techniques
- Bitcoin design
- Announcements
- Bitcoin experience

Bitcoin addresses

- Address is basically a public/private signing key pair
 - Randomized naming, collision unlikely
- At any moment, balance is a perhaps fractional number of bitcoins (BTC)
- Anyone one can send to an address, private key needed to spend
Global transaction log

Basic transaction: Take x_1 from a_1, x_2 from a_2, ..., put y_1 in a'_1, y_2 in a'_2, ...

- Of course require $\sum_1 x_i = \sum_1 y_i$
- Keep one big list of all transactions ever
- Check all balances in addresses taken from are sufficient

Bitcoin network

- Use peer-to-peer network to distribute transaction log
- Roughly similar to BitTorrent, etc. for old data
- Once a node is in sync, only updates need to be sent
- New transactions sent broadcast

Consistency and double-spending

- If all nodes always saw the same log, double-spending would be impossible
- But how to ensure consistency, if multiple clients update at once?
- Symmetric situation: me and “me” in Australia both try to spend the same $100 at the same time

Bitcoin blocks

- Group ~10 minutes of latest transactions into one “block”
- Use a proof of work so creating a block is very hard
- All nodes race, winning block propagates

Bitcoin blockchains

- Each block contains a pointer to the previous one
- Nodes prefer the longest chain they know
- E.g., inconsistency usually resolved by next block

Regulating difficulty

- Difficulty of the proof-of-work is adjusted to target the 10 minute block frequency
- Recomputed over two-week (2016 block) average
- Network adjusts to amount of computing power available
Bitcoin mining

- Where do bitcoins come from originally?
- Fixed number created per block, assigned by the node that made it
- Incentive to compete in the block generation race
- Called *mining* by analogy with gold

Outline

- Previous e-cash and techniques
- Bitcoin design
- Announcements
- Bitcoin experience

Group project presentations

- Start next week, run three lectures
- Plan 15 minute presentation plus up to 5 minutes Q&A
- One student per group presents
- Slides, BYO laptop recommended

December dates

- Final project progress reports due Friday 12/4
- Malware analysis guest lecture Wednesday 12/9
- Exercise set 5 due Thursday 12/10
- Project final reports due Wednesday 12/16

TCP congestion control

- Congestion control is a voluntary mechanism
- Forge reset packets to misbehaving hosts?
 - Used in reality for other sorts of misbehavior
- Blacklist misbehaving addresses
 - Can be misused by a dishonest adversary
 - Note: MAC spoofing is local-net only

Seeding a PRNG

- Entropy required for unpredictability
- Black-box attacks easy, reverse engineering also possible
- Bad ideas:
 - `time()`
 - Process ID
 - Time XOR PID
- How to do better?
Outline

Previous e-cash and techniques
Bitcoin design
Announcements
Bitcoin experience

Where Bitcoin came from

- Paper and early implementation by Satoshi Nakamoto
 - Generally presumed to be a pseudonym
- "Genesis block" created January 2009
 - Containing headline from The Times (of London) about a bank bailout

Current statistics

- Block chain 386,300 blocks, ~55GB
- 14.9M BTC minted (many presumed lost)
- Theoretical value at market exchange rate > $5 billion
- Millions of addresses, probably many fewer users
- Mining power: 560 petahash/sec

What can you buy with Bitcoin?

- Random stuff from many small online retailers
- Novelty/trials of some in-person purchases
- Donations to like-minded non-profits
- Illegal drugs (Silk Road successors)
- Murder for hire: currently probably a fraud

Bitcoin as a currency

- Can be exchanged for dollars, etc.
 - Currently pretty cumbersome
- In some ways more like gold than fiat currencies
 - No central authority
 - Price changes driven more by demand than supply
- Exchange rate trend: volatile, recently modestly up

Deflation and speculation

- Some people want bitcoins to spend on purchases
 - Demand based on "velocity"
 - Supply does not keep up with interest
 - So, value of 1 BTC has to go up
- Others want bitcoins because they think the price will go up in the future
 - Self-fulfilling prophecy
 - But vulnerable to steep drops if expectations change
Bitcoin mining trends
- Exponentially increasing rates
- CPU → GPU → FPGA → ASIC
- Specialized hardware has eclipsed general purpose
 - Including malware and botnets
- Recent price trends suggest continuing investment

Enforcing consistency
- Structure of network very resistant to protocol change
 - Inertia of everybody else’s code
- Changes unpopular among miners will not stick
- Minor crisis March 2013: details of database lock allocation cause half of network to reject large block

Scaling Bitcoin
- Current most pressing limitation: 1MB block size
 - Limits volume of transactions
 - A proposed increase ("BIP 101") is currently under discussion
- Size of block chain
 - Compare growth to external storage cost/GB
 - Fewer and fewer users keep the whole chain anyway

Speed of confirmation
- When is it safe to know you have received money?
 - Safe answer: wait for several blocks
 - Too slow for, say, in-person transactions
 - Much faster: wait for transaction to propagate
 - Basic rule: precedence by order seen

Stealing bitcoins
- Bitcoins are a very tempting target for malware
 - Private keys stored directly on client machines
 - Theft is non-reversible
 - Much easier than PayPal or identity theft
- Standard recommendation is to keep keys mostly offline

Bitcoin (non-)anonymity
- Bitcoin addresses are not directly tied to any other identity
- But the block chain is public, so there’s lots of information
 - E.g., list of largest balances easily collectable
- Real unlinkability is a research topic
Next time

Group project presentations