Okay, any ideas on how to make women more interested in us?

Make more exceptions?
Redefine our methods?
Stop treating them like objects?

Java
C++
Python
C
ANSI

Java
C++
Python
C
ANSI

Classes
Ch 10.1 - 10.3
Highlights

- public/private
- constructor

```cpp
class myName
{
    public:
    myName();
    myName(int x);
    char takeThis();

    private:
    char itsASecretToEveryone;
};
```
struct/class vs array

Arrays group together similar data types (any amount you want)

Classes and structs group together dissimilar types that are logically similar
A **class** is functionally the same as a struct (creates a new data type)

However, the notation is slightly different (contains functions)

```cpp
struct date
{
    int day;
    int month;
    int year;
};
```

```cpp
class date
{
    public:
    int day;
    int month;
    int year;
    void print();
};
```
public vs private

class date
{
private:
 int day;
 int month;
 int year;
public:
 void print();
 void setDate(int day, int month, int year);
};
Creating interfaces with public allows users to not worry about the private implementation.

So... more work for you (programmer) less work for everyone else.
public vs private

The **public** keyword allows anyone anywhere to access the variable/method.

The **private** keyword only allows access by/in the class where the variable/method is defined (i.e. only variables of this type can access this within itself).
public vs private

All variables should be private

While this means you need methods to set variables, users do not need to know how the class works

This allows an easier interface for the user (also easier to modify/update code)

(See: datePrivate.cpp)
public vs private

The idea is: if the stuff underneath changes, it will not effect how you use it

For example, you change from a normal engine to a hybrid engine... but you still fill it up the same way
public vs private

An important point: private just means only “date” things can modify the private variables of a “date” object.

However, two different “date” objects can access each other's privates.

(see: privateDates.cpp)
Constructors

The date class has two functions: setDate() and print()

As we need to run setDate() on a variable before it is useful anyways

In fact, such a thing exists and is called a constructor (run every time you create a variable)
Constructors

The class name and the constructor must be identical
(constructors also have no return type)

```cpp
class date
{
private:
    int day;
    int month;
    int year;
public:
    date(int day, int month, int year);
    // ^^ constructor has same name as class
    void print();
};
```

(See: dateConstructor.cpp)
Constructors

If you don't put a constructor, C++ will make a default constructor for you (no arguments):

```cpp
date(); // default constructor
```

```cpp
date(int day, int month, int year);
```

To use the default constructor say this:

```cpp
date never; .... or ...
date never = date();
```

... not this:

```cpp
date notWhatYouWant();
// ^ function declaration
Constructors

If you declared constructors you must use one of those

Only if you declare no constructors, does C++ make one for you (the default)

Note: our dateConstructor.cpp has no way to change the value of the date after it is created (thus gives control over how to use class)
Just as writing very long main() functions can start to get confusing...

... writing very long .cpp files can also get confusing

Classes are a good way to split up code among different files
#include

You can #include your class back in at the top or link to it at compile time.

You have to be careful as #include basically copies/pastes text for you.

Will not compile if class declared twice (used in two different classes you #include).
To get around this, you can use compiler commands in your file:

```
#include

#define DATE

class date
{
 public:
 int day;
 int month;
 int year;
 void print() const;
};

#endif
```

This ensures you only have declarations once.

(See: dateClass.hpp, dateClass.cpp, runDate.cpp)