1. Let A and B two nonsingular matrices of size $n \times n$. Show that

$$fl(AB) = (A + E_A)B \quad \text{where} \quad |E_A| \leq \gamma_n |A| |B| |B^{-1}|$$

(γ_n defined in the notes) and derive a corresponding bound in which B is perturbed. [This result shows the limitation of backward error analysis. In this case it is clear that Forward error analysis yields a ‘cleaner’ result].

2. (a) Determine the standard LU factorization of the matrix

on the right.
(b) Compute the determinant of A
(c) Compute the inverse of A.
(d) Repeat the above questions when partial pivoting is used, i.e., find the permutation matrix P and the matrices L, U such that $PA = LU$, compute the determinant of A based on this factorization, and compute the inverse of A, based on this factorization.
(e) Use the answer from (d) to solve the system $Ax = b$ when $b = [-2, 2, 2]^T$

3. (a) Given a nonsingular matrix A, and two column vectors u and v, prove that if $1 + v^T A^{-1} u \neq 0$ then $A + uv^T$ is invertible and its inverse is given by the so-called Sherman-Morrison formula:

$$(A + uv^T)^{-1} = A^{-1} - \frac{1}{1 + v^T A^{-1} u} A^{-1} uv^T A^{-1}$$

[Hint: First answer the following question. Let $u \in \mathbb{R}^n, v \in \mathbb{R}^n$ with $v^T u + 1 \neq 0$. Show that $I + uv^T$ is nonsingular. What is the inverse $I + uv^T$? Then If $B = A + uv^T$ where A is nonsingular, write B as $B = A(I + A^{-1} uv^T)$...]

(b) Let A be a square nonsingular matrix and let B the matrix obtained from A by adding a perturbation α to a_{11}. Assuming B is nonsingular, give an upper bound for $\|B^{-1}\|$ in two different ways: (a) by using the standard result on $\|(A + E)^{-1}\|$; (b) by using the expression of the inverse using the Sherman-Morrison formula.

(c) Suppose you have already solved a linear system with the matrix A (and saved the L, U factors) and then you need to solve a linear system with the matrix $B = A + uv^T$. How would you proceed?
4. Using matlab, plot in a logarithmic scale the condition numbers $\kappa_2(H_n)$ for $n = 3 : 12$, where H_n is the Hilbert matrix of dimension n. [Note: the matlab command `hilb(n)` generates the n-th Hilbert matrix.] Based on the plot give an approximate expression for the condition number $\kappa_2(H_n)$ as a function of n.

5. Consider the matrix A shown on the right, where I represents the $n \times n$ identity.
 (a) What is the inverse of A?
 (b) Show that $\kappa_F(A) = 2n + \|Z\|^2_F$.
 (c) Express the 1-norm condition number of A in terms of the 1-norm of Z.
 (d) Express the ∞-norm condition number of A in terms of the ∞-norm of Z.

6. Obtain a lower bound for $\kappa_1(A)$ (without computing A^{-1}) for the matrix A

\[
A = \begin{pmatrix}
1 & 2 & 3.001 \\
4 & 5.002 & 6 \\
6.999 & 8.001 & 8.999
\end{pmatrix}
\]

[Hint: A is close to a singular matrix]

7. Show that $\kappa(AB) \leq \kappa(A)\kappa(B)$. Is it true in general that $\kappa(A) = \kappa(A^T)$? Show that $\kappa_2(A) = \kappa_2(A^T)$ and $\kappa_2(A^T A) = \kappa_2(A)^2$.

8. Consider the following two systems.

\[
Ax \equiv \begin{pmatrix}
1 & 1 & -1 \\
1 & 2 & 0.01 \\
0 & 1 & 1
\end{pmatrix} \begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix} = \begin{pmatrix}
-1 \\
1.01 \\
2.0
\end{pmatrix}
\]

\[
\tilde{A}y \equiv \begin{pmatrix}
1 & 1 & -1 \\
1.0001 & 2 & 0.01 \\
0.0 & 1 & 1.0001
\end{pmatrix} \begin{pmatrix}
y_1 \\
y_2 \\
y_3
\end{pmatrix} = \begin{pmatrix}
-1 \\
1.01 \\
2.0
\end{pmatrix}
\]

The solution of the first system is $x_1 = -1; x_2 = x_3 = 1$. (a) Using matlab compute the solution y to the second system and compute also $\kappa_\infty(A)$. (b) Then compute $\|x - y\|_\infty/\|x\|_\infty$ and an upper bound for it obtained using the condition number. (c) Finally, get an upper bound for the same quantity obtained using the componentwise condition number (theorem 4 from Lect. notes set 6). ← Leave this last question out for next homework