LARGE SPARSE EIGENVALUE PROBLEMS

- Projection methods
- The subspace iteration
- Krylov subspace methods: Arnoldi and Lanczos
- Golub-Kahan-Lanczos bidiagonalization
General Tools for Solving Large Eigen-Problems

- Projection techniques – Arnoldi, Lanczos, Subspace Iteration;
- Preconditionings: shift-and-invert, Polynomials, ...
- Deflation and restarting techniques
- Computational codes often combine these three ingredients
A few popular solution Methods

• Subspace Iteration [Now less popular – sometimes used for validation]

• Arnoldi’s method (or Lanczos) with polynomial acceleration

• Shift-and-invert and other preconditioners. [Use Arnoldi or Lanczos for \((A - \sigma I)^{-1}\).

• Davidson’s method and variants, Jacobi-Davidson

• Specialized method: Automatic Multilevel Substructuring (AMLS).
Projection Methods for Eigenvalue Problems

Projection method onto K orthogonal to L

- **Given:** Two subspaces K and L of same dimension.
- **Approximate eigenpairs** $\tilde{\lambda}, \tilde{u}$, obtained by solving:

 \[
 \text{Find: } \tilde{\lambda} \in \mathbb{C}, \tilde{u} \in K \text{ such that } (\tilde{\lambda}I - A)\tilde{u} \perp L
 \]

- **Two types of methods:**

 Orthogonal projection methods: Situation when $L = K$.

 Oblique projection methods: When $L \neq K$.

- First situation leads to Rayleigh-Ritz procedure
Rayleigh-Ritz projection

Given: a subspace X known to contain good approximations to eigenvectors of A.

Question: How to extract ‘best’ approximations to eigenvalues/eigenvectors from this subspace?

Answer: Orthogonal projection method

- Let $Q = [q_1, \ldots, q_m] =$ orthonormal basis of X

- Orthogonal projection method onto X yields:

 $$Q^H(A - \tilde{\lambda}I)\tilde{u} = 0 \rightarrow$$

- $Q^H AQy = \tilde{\lambda}y$ where $\tilde{u} = Qy$

- Known as Rayleigh Ritz process
Procedure:
1. Obtain an orthonormal basis of \(X \)
2. Compute \(C = Q^H AQ \) (an \(m \times m \) matrix)
3. Obtain Schur factorization of \(C \), \(C = Y R Y^H \)
4. Compute \(\tilde{U} = QY \)

Property: if \(X \) is (exactly) invariant, then procedure will yield exact eigenvalues and eigenvectors.

Proof: Since \(X \) is invariant, \((A - \tilde{\lambda}I)u = Qz \) for a certain \(z \). \(Q^H Qz = 0 \) implies \(z = 0 \) and therefore \((A - \tilde{\lambda}I)u = 0 \).

Can use this procedure in conjunction with the subspace obtained from subspace iteration algorithm.
Subspace Iteration

Original idea: projection technique onto a subspace of the form $Y = A^k X$

Practically: A^k replaced by suitable polynomial

Advantages:
- Easy to implement (in symmetric case);
- Easy to analyze;

Disadvantage: Slow.

Often used with polynomial acceleration: $A^k X$ replaced by $C_k(A) X$. Typically $C_k = \text{Chebyshev polynomial}$.
Algorithm: Subspace Iteration with Projection

1. Start: Choose an initial system of vectors $X = [x_0, \ldots, x_m]$ and an initial polynomial C_k.

2. Iterate: Until convergence do:
 (a) Compute $\hat{Z} = C_k(A)X$. [Simplest case: $\hat{Z} = AX$.]
 (b) Orthonormalize \hat{Z}: $[Z, R_Z] = qr(\hat{Z}, 0)$
 (c) Compute $B = Z^H AZ$
 (d) Compute the Schur factorization $B = Y R_B Y^H$ of B
 (e) Compute $X := ZY$.
 (f) Test for convergence. If satisfied stop. Else select a new polynomial C_k' and continue.
THEOREM: Let $S_0 = \text{span}\{x_1, x_2, \ldots, x_m\}$ and assume that S_0 is such that the vectors $\{Px_i\}_{i=1,\ldots,m}$ are linearly independent where P is the spectral projector associated with $\lambda_1, \ldots, \lambda_m$. Let P_k the orthogonal projector onto the subspace $S_k = \text{span}\{X_k\}$. Then for each eigenvector u_i of A, $i = 1, \ldots, m$, there exists a unique vector s_i in the subspace S_0 such that $Ps_i = u_i$. Moreover, the following inequality is satisfied

$$\|(I - P_k)u_i\|_2 \leq \|u_i - s_i\|_2 \left(\frac{\lambda_{m+1}}{\lambda_i} + \epsilon_k\right)^k,$$

where ϵ_k tends to zero as k tends to infinity.
KRYLOV SUBSPACE METHODS
Krylov subspace methods

Principle: Projection methods on Krylov subspaces:

\[K_m(A, v_1) = \text{span}\{v_1, Av_1, \ldots, A^{m-1}v_1\} \]

- The most important class of projection methods [for linear systems and for eigenvalue problems]
- Variants depend on the subspace \(L \)

Let \(\mu = \text{deg. of minimal polynom. of } v_1 \). Then:

- \(K_m = \{p(A)v_1 | p = \text{polynomial of degree } \leq m - 1\} \)
- \(K_m = K_\mu \) for all \(m \geq \mu \). Moreover, \(K_\mu \) is invariant under \(A \).
- \(\dim(K_m) = m \) iff \(\mu \geq m \).
Arnoldi’s algorithm

Goal: to compute an orthogonal basis of K_m.

Input: Initial vector v_1, with $\|v_1\|_2 = 1$ and m.

Algorithm 1. Arnoldi’s procedure

For $j = 1, \ldots, m$ do

Compute $w := Av_j$

For $i = 1, \ldots, j$, do

\[
\begin{align*}
 h_{i,j} &:= (w, v_i) \\
 w &:= w - h_{i,j} v_i \\
 h_{j+1,j} &= \|w\|_2 \\
 v_{j+1} &= w / h_{j+1,j}
\end{align*}
\]

End

Based on Gram-Schmidt procedure
Result of Arnoldi’s algorithm

Let: \(\overline{H}_m = \begin{pmatrix} x & x & x & x & x \\ x & x & x & x & x \\ x & x & x & x \\ x & x & x \\ x & \end{pmatrix} \), \(H_m = \begin{pmatrix} x & x & x & x & x \\ x & x & x & x & x \\ x & x & x & x \\ x & x & x \\ x & x & \end{pmatrix} \)

Results:

1. \(V_m = [v_1, v_2, \ldots, v_m] \) orthonormal basis of \(K_m \).
2. \(AV_m = V_{m+1} \overline{H}_m = V_m H_m + h_{m+1,m} v_{m+1} e_T^T \)
3. \(V_m^T AV_m = H_m \equiv \overline{H}_m - \) last row.

14-13

Text: 36; AB: 4.6.1, 4.6.7-8, 4.5.4, 4.6.2; Gvl4 10.1,10.5.1 – Eigen3
Write approximate eigenvector as \(\tilde{u} = V_my \)

Galerkin condition:

\[
(A - \tilde{\lambda}I)V_my \perp K_m \quad \rightarrow \quad V_m^H(A - \tilde{\lambda}I)V_my = 0
\]

Approximate eigenvalues are eigenvalues of \(H_m \)

\[
H_my_j = \tilde{\lambda}_j y_j
\]

Associated approximate eigenvectors are

\[
\tilde{u}_j = V_my_j
\]

Typically a few of the outermost eigenvalues will converge first.
Hermitian case: The Lanczos Algorithm

The Hessenberg matrix becomes tridiagonal:

\[A = A^H \quad \text{and} \quad V_m^H A V_m = H_m \rightarrow H_m = H_m^H \]

Denote \(H_m \) by \(T_m \) and \(\bar{H}_m \) by \(\bar{T}_m \). We can write

\[
T_m = \begin{pmatrix}
\alpha_1 & \beta_2 \\
\beta_2 & \alpha_2 & \beta_3 \\
\beta_3 & \alpha_3 & \beta_4 \\
& \ddots & \ddots & \ddots \\
& & & \beta_m & \alpha_m
\end{pmatrix}
\]

Relation \(A V_m = V_{m+1} \bar{T}_m \)
Consequence: three term recurrence

\[\beta_{j+1} v_{j+1} = A v_j - \alpha_j v_j - \beta_j v_{j-1} \]

ALGORITHM : 2. Lanczos

1. Choose an initial \(v_1 \) with \(\| v_1 \|_2 = 1 \);
 Set \(\beta_1 \equiv 0, v_0 \equiv 0 \)
2. For \(j = 1, 2, \ldots, m \) Do:
3. \[w_j := A v_j - \beta_j v_{j-1} \]
4. \[\alpha_j := (w_j, v_j) \]
5. \[w_j := w_j - \alpha_j v_j \]
6. \[\beta_{j+1} := \| w_j \|_2. \text{ If } \beta_{j+1} = 0 \text{ then Stop} \]
7. \[v_{j+1} := w_j / \beta_{j+1} \]
8. EndDo

Hermitian matrix + Arnoldi → Hermitian Lanczos
In theory v_i's defined by 3-term recurrence are orthogonal.

However: in practice severe loss of orthogonality;

Observation [Paige, 1981]: Loss of orthogonality starts suddenly, when the first eigenpair has converged. It is a sign of loss of linear independence of the computed eigenvectors. When orthogonality is lost, then several the copies of the same eigenvalue start appearing.
Reorthogonalization

- Full reorthogonalization – reorthogonalize v_{j+1} against all previous v_i's every time.
- Partial reorthogonalization – reorthogonalize v_{j+1} against all previous v_i's only when needed [Parlett & Simon]
- Selective reorthogonalization – reorthogonalize v_{j+1} against computed eigenvectors [Parlett & Scott]
- No reorthogonalization – Do not reorthogonalize - but take measures to deal with 'spurious' eigenvalues. [Cullum & Willoughby]
We now deal with rectangular matrices. Let $A \in \mathbb{R}^{m \times n}$.

ALGORITHM : 3. Golub-Kahan-Lanczos

1. Choose an initial v_1 with $\|v_1\|_2 = 1$; Set $p \equiv v_1$, $\beta_0 \equiv 1$, $u_0 \equiv 0$
2. For $k = 1, \ldots, p$ Do:
 3. $r := Av_k - \beta_{k-1}u_{k-1}$
 4. $\alpha_k = \|r\|_2$; $u_k = r / \alpha_k$
 5. $p = A^T u_k - \alpha_k v_k$
 6. $\beta_k = \|p\|_2$; $v_{k+1} := p / \beta_k$
3. EndDo

Let: $V_{p+1} = [v_1, v_2, \cdots, v_{p+1}] \in \mathbb{R}^{n \times (p+1)}$

Let: $U_p = [u_1, u_2, \cdots, u_p] \in \mathbb{R}^{m \times p}$
Let:

\[
B_p = \begin{bmatrix}
\alpha_1 & \beta_2 \\
\alpha_2 & \beta_3 \\
\vdots & \vdots \\
\alpha_p & \beta_{p+1}
\end{bmatrix};
\]

\[
\hat{B}_p = B_p(:, 1 : p)
\]

\[
V_p = [v_1, v_2, \cdots, v_p] \in \mathbb{R}^{n \times p}
\]

Result:

\[
V_{p+1}^T V_{p+1} = I
\]

\[
U_p^T U_p = I
\]

\[
A V_p = U_p \hat{B}_p
\]

\[
A^T U_p = V_{p+1} B_p^T
\]
Observe that:
\[A^T(AV_p) = A^T(U_p \hat{B}_p) = V_{p+1}B_p^T \hat{B}_p \]

\[B_p^T \hat{B}_p \] is a (symmetric) tridiagonal matrix of size \((p + 1) \times p\)

Call this matrix \(\overline{T}_k\). Then:
\[(A^T A)V_p = V_{p+1}\overline{T}_p \]

Standard Lanczos relation!

Algorithm is equivalent to standard Lanczos applied to \(A^T A\).

Similar result for the \(u_i\)'s [involves \(AA^T\)].

Work out the details: What are the entries of \(\overline{T}_p\) relative to those of \(B_p\)?