LARGE SPARSE EIGENVALUE PROBLEMS

- Projection methods
- The subspace iteration
- Krylov subspace methods: Arnoldi and Lanczos
- Golub-Kahan-Lanczos bidiagonalization

General Tools for Solving Large Eigen-Problems

- Projection techniques – Arnoldi, Lanczos, Subspace Iteration;
- Preconditionings: shift-and-invert, Polynomials, ...
- Deflation and restarting techniques
- Computational codes often combine these three ingredients

A few popular solution Methods

- Subspace Iteration [Now less popular – sometimes used for validation]
- Arnoldi’s method (or Lanczos) with polynomial acceleration
- Shift-and-invert and other preconditioners. [Use Arnoldi or Lanczos for \((A - \sigma I)^{-1}\).]
- Davidson’s method and variants, Jacobi-Davidson
- Specialized method: Automatic Multilevel Substructuring (AMLS).

Projection Methods for Eigenvalue Problems

Projection method onto \(K\) orthogonal to \(L\)

- Given: Two subspaces \(K\) and \(L\) of same dimension.
- Approximate eigenpairs \(\tilde{\lambda}, \tilde{u}\), obtained by solving:
 \[
 \text{Find: } \tilde{\lambda} \in \mathbb{C}, \tilde{u} \in K \text{ such that } (\tilde{\lambda} I - A)\tilde{u} \perp L
 \]
- Two types of methods:
 Orthogonal projection methods: Situation when \(L = K\).
 Oblique projection methods: When \(L \neq K\).
- First situation leads to Rayleigh-Ritz procedure
Rayleigh-Ritz projection

Given: a subspace X known to contain good approximations to eigenvectors of A.

Question: How to extract ‘best’ approximations to eigenvalues/eigenvectors from this subspace?

Answer: Orthogonal projection method
- Let $Q = [q_1, \ldots, q_m] = \text{orthonormal basis of } X$
- Orthogonal projection method onto X yields:
 \[Q^H (A - \tilde{\lambda}I) \tilde{u} = 0 \]
- Known as Rayleigh Ritz process

Subspace Iteration

Original idea: projection technique onto a subspace of the form $Y = A^k X$
Practically: A^k replaced by suitable polynomial
Advantages: • Easy to implement (in symmetric case);	• Easy to analyze;
Disadvantage: Slow.
- Often used with polynomial acceleration: $A^k X$ replaced by $C_k(A)X$. Typically $C_k = \text{Chebyshev polynomial}$.

Algorithm: Subspace Iteration with Projection
1. Start: Choose an initial system of vectors $X = [x_0, \ldots, x_m]$ and an initial polynomial C_k.
2. Iterate: Until convergence do:
 (a) Compute $\tilde{Z} = C_k(A)X$. [Simplest case: $\tilde{Z} = AX$.]
 (b) Orthonormalize \tilde{Z}: $[Z, R_Z] = qr(\tilde{Z}, 0)$
 (c) Compute $B = Z^H AZ$
 (d) Compute the Schur factorization $B = Y R_B Y^H$ of B
 (e) Compute $X := ZY$.
 (f) Test for convergence. If satisfied stop. Else select a new polynomial C'_k and continue.
THEOREM: Let $S_0 = \text{span}\{x_1, x_2, \ldots, x_m\}$ and assume that S_0 is such that the vectors $\{P^i\} = \{P^i x_i\} : i = 1, \ldots, m$ are linearly independent, where P is the spectral projector associated with $\lambda_1, \ldots, \lambda_m$. Let P_k the orthogonal projector onto the subspace $S_k = \text{span}\{X_k\}$. Then for each eigenvector u_i of A, $i = 1, \ldots, m$, there exists a unique vector s_i in the subspace S_0 such that $Ps_i = u_i$. Moreover, the following inequality is satisfied

$$\| (I - P_k)u_i \|_2 \leq \| u_i - s_i \|_2 \left(\frac{\lambda_{m+1}}{\lambda_i} + \epsilon_k \right)^k,$$

where ϵ_k tends to zero as k tends to infinity.

Krylov subspace methods

Principle: Projection methods on Krylov subspaces:

$$K_m(A, v_1) = \text{span}\{v_1, Av_1, \ldots, A^{m-1}v_1\}$$

- The most important class of projection methods [for linear systems and for eigenvalue problems]
- Variants depend on the subspace L

- Let $\mu = \text{deg. of minimal polynom. of } v_1$. Then:
 - $K_m = \{p(A)v_1 | p = \text{polynomial of degree } \leq m - 1\}$
 - $K_m = K_\mu$ for all $m \geq \mu$. Moreover, K_μ is invariant under A.
 - $\dim(K_m) = m$ iff $\mu \geq m$.

Arnoldi’s algorithm

- Goal: to compute an orthogonal basis of K_m.
- Input: Initial vector v_1, with $\| v_1 \|_2 = 1$ and m.

Algorithm:

1. **Arnoldi’s procedure**

 For $j = 1, \ldots, m$ do

 Compute $w := Av_j$

 For $i = 1, \ldots, j$, do

 \[h_{i,j} := (w, v_i) \]

 \[w := w - h_{i,j}v_i \]

 \[h_{j+1,j} := \|w\|_2; \]

 \[v_{j+1} := w/h_{j+1,j} \]

 End

- Based on Gram-Schmidt procedure
Result of Arnoldi’s algorithm

Let: \(\mathbf{H}_m = \begin{pmatrix} x & x & x & x & x \\ x & x & x & x & x \\ x & x & x & x & x \\ x & x & x & x & x \\ x & x & x & x & x \end{pmatrix} \), \(\mathbf{H}_m = \begin{pmatrix} x & x & x & x & x \\ x & x & x & x & x \\ x & x & x & x & x \\ x & x & x & x & x \\ x & x & x & x & x \end{pmatrix} \)

Results:
1. \(\mathbf{V}_m = [v_1, v_2, \ldots, v_m] \) orthonormal basis of \(\mathbf{K}_m \).
2. \(\mathbf{A} \mathbf{V}_m = \mathbf{V}_{m+1} \mathbf{H}_m = \mathbf{V}_m \mathbf{H}_m + h_{m+1,m} v_{m+1} e_m^T \)
3. \(\mathbf{V}_m^T \mathbf{A} \mathbf{V}_m = \mathbf{H}_m \equiv \mathbf{H}_m - \text{last row.} \)

Application to eigenvalue problems

- Write approximate eigenvector as \(\tilde{\mathbf{u}} = \mathbf{V}_m \mathbf{y} \)
- Galerkin condition:
 \((\mathbf{A} - \tilde{\lambda} \mathbf{I}) \mathbf{V}_m \mathbf{y} \perp \mathbf{K}_m \rightarrow \mathbf{V}_m^H (\mathbf{A} - \tilde{\lambda} \mathbf{I}) \mathbf{V}_m \mathbf{y} = 0 \)
- Approximate eigenvalues are eigenvalues of \(\mathbf{H}_m \)
 \(\mathbf{H}_m \mathbf{y}_j = \tilde{\lambda}_j \mathbf{y}_j \)
- Associated approximate eigenvectors are \(\tilde{\mathbf{u}}_j = \mathbf{V}_m \mathbf{y}_j \)
- Typically a few of the outermost eigenvalues will converge first.

Hermitian case: The Lanczos Algorithm

- The Hessenberg matrix becomes tridiagonal:
 \(\mathbf{A} = \mathbf{A}^H \) and \(\mathbf{V}_m^H \mathbf{A} \mathbf{V}_m = \mathbf{H}_m \rightarrow \mathbf{H}_m = \mathbf{H}_m^H \)
- Denote \(\mathbf{H}_m \) by \(\mathbf{T}_m \) and \(\tilde{\mathbf{H}}_m \) by \(\tilde{\mathbf{T}}_m \). We can write
 \(\mathbf{T}_m = \begin{pmatrix} \alpha_1 & \beta_2 \\ \beta_2 & \alpha_2 & \beta_3 \\ \beta_3 & \alpha_3 & \beta_4 \\ \vdots & \ddots & \ddots \\ \beta_m & \alpha_m \end{pmatrix} \)
- Relation \(\mathbf{A} \mathbf{V}_m = \mathbf{V}_{m+1} \mathbf{T}_m \)

Consequence: three term recurrence
\(\beta_{j+1} \mathbf{v}_{j+1} = \mathbf{A} \mathbf{v}_j - \alpha_j \mathbf{v}_j - \beta_j \mathbf{v}_{j-1} \)

ALGORITHM : 2. Lanczos
1. Choose an initial \(\mathbf{v}_1 \) with \(\| \mathbf{v}_1 \|_2 = 1 \);
 Set \(\beta_1 \equiv 0, v_0 \equiv 0 \)
2. For \(j = 1, 2, \ldots, m \) Do:
3. \(\mathbf{w}_j := \mathbf{A} \mathbf{v}_j - \beta_j \mathbf{v}_{j-1} \)
4. \(\alpha_j := (\mathbf{w}_j, \mathbf{v}_j) \)
5. \(\mathbf{w}_j := \mathbf{w}_j - \alpha_j \mathbf{v}_j \)
6. \(\beta_{j+1} := \| \mathbf{w}_j \|_2. \) If \(\beta_{j+1} = 0 \) then Stop
7. \(\mathbf{v}_{j+1} := \mathbf{w}_j / \beta_{j+1} \)
8. EndDo

Hermitian matrix + Arnoldi → Hermitian Lanczos
In theory v_i’s defined by 3-term recurrence are orthogonal.

However: in practice severe loss of orthogonality;

Observation [Paige, 1981]: Loss of orthogonality starts suddenly, when the first eigenpair has converged. It is a sign of loss of linear independence of the computed eigenvectors. When orthogonality is lost, then several the copies of the same eigenvalue start appearing.

Reorthogonalization

- Full reorthogonalization – reorthogonalize v_{j+1} against all previous v_i’s every time.
- Partial reorthogonalization – reorthogonalize v_{j+1} against all previous v_i’s only when needed [Parlett & Simon]
- Selective reorthogonalization – reorthogonalize v_{j+1} against computed eigenvectors [Parlett & Scott]
- No reorthogonalization – Do not reorthogonalize - but take measures to deal with ‘spurious’ eigenvalues. [Cullum & Willoughby]

Lanczos Bidiagonalization

We now deal with rectangular matrices. Let $A \in \mathbb{R}^{m \times n}$.

Algorithm: 3. Golub-Kahan-Lanczos

1. Choose an initial v_1 with $\|v_1\|_2 = 1$; Set $p \equiv v_1$, $\beta_0 \equiv 1$, $u_0 \equiv 0$
2. For $k = 1, \ldots, p$ Do:
3. $r := Av_k - \beta_{k-1}u_{k-1}$
4. $\alpha_k = \|r\|_2$; $u_k = r/\alpha_k$;
5. $p = A^T u_k - \alpha_k v_k$
6. $\beta_k = \|p\|_2$; $v_{k+1} := p/\beta_k$
7. EndDo

Let:

$V_p = [v_1, v_2, \ldots, v_p] \in \mathbb{R}^{n \times p}$
$U_p = [u_1, u_2, \ldots, u_p] \in \mathbb{R}^{m \times p}$

Result:

$B_p = \begin{bmatrix} \alpha_1 & \beta_2 & \alpha_2 & \beta_3 & \cdots & \cdots \\ \alpha_2 & \beta_3 & \alpha_3 & \beta_4 & \cdots & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \cdots \\ \cdots & \cdots & \cdots & \cdots & \ddots & \alpha_p \\ \cdots & \cdots & \cdots & \cdots & \cdots & \beta_{p+1} \end{bmatrix}$

$\hat{B}_p = B_p(:,1:p)$

$V_p = [v_1, v_2, \ldots, v_p] \in \mathbb{R}^{n \times p}$

$V_{p+1}^T V_{p+1} = I$
$U_{p+1}^T U_{p+1} = I$
$A V_p = U_p \hat{B}_p$
$A^T U_p = V_{p+1} \hat{B}_p^T$
Observe that:

\[A^T(AV_p) = A^T(U_p \hat{B}_p) \]
\[= V_{p+1}B_p^T \hat{B}_p \]

\[B_p^T \hat{B}_p \] is a (symmetric) tridiagonal matrix of size \((p + 1) \times p\)

Call this matrix \(T_k \). Then:

\[(A^T A)V_p = V_{p+1} \overline{T}_p \]

Standard Lanczos relation!

Algorithm is equivalent to standard Lanczos applied to \(A^T A \).

Similar result for the \(u_i \)'s [involves \(AA^T \)]

Work out the details: What are the entries of \(\overline{T}_p \) relative to those of \(B_p \)?