SOLVING LINEAR SYSTEMS OF EQUATIONS

- Background on linear systems
- Gaussian elimination and the Gauss-Jordan algorithms
- The LU factorization
- Gaussian Elimination with pivoting
Background: Linear systems

The Problem: \(A \) is an \(n \times n \) matrix, and \(b \) a vector of \(\mathbb{R}^n \). Find \(x \) such that:

\[
Ax = b
\]

- \(x \) is the unknown vector, \(b \) the right-hand side, and \(A \) is the coefficient matrix.

Example:

\[
\begin{align*}
2x_1 + 4x_2 + 4x_3 &= 6 \\
x_1 + 5x_2 + 6x_3 &= 4 \\
x_1 + 3x_2 + x_3 &= 8
\end{align*}
\]

or

\[
\begin{pmatrix}
2 & 4 & 4 \\
1 & 5 & 6 \\
1 & 3 & 1
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix} =
\begin{pmatrix}
6 \\
4 \\
8
\end{pmatrix}
\]

Solution of above system?
Standard mathematical solution by Cramer’s rule:

\[x_i = \frac{\det(A_i)}{\det(A)} \]

\(A_i\) = matrix obtained by replacing \(i\)-th column by \(b\).

Note: This formula is useless in practice beyond \(n = 3\) or \(n = 4\).

Three situations:

1. The matrix \(A\) is nonsingular. There is a unique solution given by \(x = A^{-1}b\).

2. The matrix \(A\) is singular and \(b \in \text{Ran}(A)\). There are infinitely many solutions.

3. The matrix \(A\) is singular and \(b \notin \text{Ran}(A)\). There are no solutions.
Example: (1) Let \(A = \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix} \) \(b = \begin{pmatrix} 1 \\ 8 \end{pmatrix} \). \(A \) is nonsingular \(\Rightarrow \) a unique solution \(x = \begin{pmatrix} 0.5 \\ 2 \end{pmatrix} \).

Example: (2) Case where \(A \) is singular & \(b \in \text{Ran}(A) \):

\[
A = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.
\]

\(\Rightarrow \) infinitely many solutions: \(x(\alpha) = \begin{pmatrix} 0.5 \\ \alpha \end{pmatrix} \) \(\forall \alpha \).

Example: (3) Let \(A \) same as above, but \(b = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \).

\(\Rightarrow \) No solutions since 2nd equation cannot be satisfied
Triangular linear systems

Example:

\[
\begin{pmatrix}
2 & 4 & 4 \\
0 & 5 & -2 \\
0 & 0 & 2
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix} =
\begin{pmatrix}
2 \\
1 \\
4
\end{pmatrix}
\]

- One equation can be trivially solved: the last one. \(x_3 = 2 \)
- \(x_3 \) is known we can now solve the 2nd equation:
 \[
 5x_2 - 2x_3 = 1 \quad \rightarrow \quad 5x_2 - 2 \times 4 = 1 \quad \rightarrow \quad x_2 = 1
 \]
- Finally \(x_1 \) can be determined similarly:
 \[
 2x_1 + 4x_2 + 4x_3 = 2 \quad \rightarrow \quad ... \quad \rightarrow \quad x_1 = -5
 \]
ALGORITHM 1. Back-Substitution algorithm

For $i = n : -1 : 1$ do:
\[
\begin{align*}
t &:= b_i \\
For j = i + 1 : n do \\
\quad t &:= t - a_{ij}x_j \\
End \\
x_i &:= t / a_{ii}
\end{align*}
\]

Ended

We must require that each $a_{ii} \neq 0$

Operation count?

Round-off error (use previous results for (\cdot, \cdot))?
The computed solution \hat{x} of the triangular system $Ux = b$ computed by the previous algorithm satisfies:

$$(U + E)\hat{x} = b$$

with

$$|E| \leq n u |U| + O(u^2)$$

- Backward error analysis. Computed x solves a slightly perturbed system.
- Backward error not large in general. It is said that triangular solve is “backward stable”.
Column version of back-substitution:

Back-Substitution algorithm. Column version

For $j = n : -1 : 1$ do:

\[x_j = \frac{b_j}{a_{jj}} \]

For $i = 1 : j - 1$ do

\[b_i := b_i - x_j * a_{ij} \]

End

End

Justify the above algorithm [Show that it does indeed compute the solution]

See text for analogous algorithms for lower triangular systems.
Back to arbitrary linear systems.

Principle of the method: Since triangular systems are easy to solve, we will transform a linear system into one that is triangular.

Main operation: combine rows so that zeros appear in the required locations to make the system triangular.

Notation: use a Tableau:

\[
\begin{align*}
2x_1 + 4x_2 + 4x_3 &= 2 \\
x_1 + 3x_2 + 1x_3 &= 1 \\
x_1 + 5x_2 + 6x_3 &= -6
\end{align*}
\]
Main operation used: scaling and adding rows.

Example: Replace row2 by: row2 - \(\frac{1}{2} \) * row1:

\[
\begin{bmatrix}
2 & 4 & 4 \\
1 & 3 & 1 \\
1 & 5 & 6
\end{bmatrix}
\rightarrow
\begin{bmatrix}
2 & 4 & 4 \\
0 & 1 & -1 \\
1 & 5 & 6
\end{bmatrix}
\]

This is equivalent to:

\[
\begin{bmatrix}
1 & 0 & 0 \\
-\frac{1}{2} & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\times
\begin{bmatrix}
2 & 4 & 4 \\
1 & 3 & 1 \\
1 & 5 & 6
\end{bmatrix}
= \begin{bmatrix}
2 & 4 & 4 \\
0 & 1 & -1 \\
1 & 5 & 6
\end{bmatrix}
\]

The left-hand matrix is of the form

\[
M = I - ve_1^T \quad \text{with} \quad v = \begin{pmatrix}
0 \\
\frac{1}{2} \\
0
\end{pmatrix}
\]
Linear Systems of Equations: Gaussian Elimination

Go back to original system. Step 1 must transform:

\[
\begin{bmatrix}
 2 & 4 & 4 \\
 1 & 3 & 1 \\
 1 & 5 & 6
\end{bmatrix}
\begin{bmatrix}
 2 \\
 1 \\
 -6
\end{bmatrix}
\]

into:

\[
\begin{bmatrix}
 x & x & x & x \\
 0 & x & x & x \\
 0 & x & x & x
\end{bmatrix}
\]

\[
\begin{align*}
row_2 & := row_2 - \frac{1}{2} \times row_1: \\
row_3 & := row_3 - \frac{1}{2} \times row_1:
\end{align*}
\]

\[
\begin{bmatrix}
 2 & 4 & 4 & 2 \\
 0 & 1 & -1 & 0 \\
 1 & 5 & 6 & -6
\end{bmatrix}
\begin{bmatrix}
 2 \\
 0 \\
 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
 2 & 4 & 4 & 2 \\
 0 & 1 & -1 & 0 \\
 0 & 3 & 4 & -7
\end{bmatrix}
\]
Equivalent to

\[
\begin{bmatrix}
1 & 0 & 0 \\
-\frac{1}{2} & 1 & 0 \\
-\frac{1}{2} & 0 & 1 \\
\end{bmatrix}
\times
\begin{bmatrix}
2 & 4 & 4 & 2 \\
1 & 3 & 1 & 1 \\
1 & 5 & 6 & -6 \\
\end{bmatrix}
= \begin{bmatrix}
2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
0 & 3 & 4 & -7 \\
\end{bmatrix}
\]

\[
[A, b] \rightarrow [M_1A, M_1b]; \quad M_1 = I - v^{(1)}e_T^T; \quad v^{(1)} = \begin{pmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}
\]

New system \(A_1x = b_1\). Step 2 must now transform:

\[
\begin{bmatrix}
2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
0 & 3 & 4 & -7 \\
\end{bmatrix}
\] into:

\[
\begin{bmatrix}
x & x & x & x \\
0 & x & x & x \\
0 & 0 & x & x \\
\end{bmatrix}
\]
\[\text{row}_3 := \text{row}_3 - 3 \times \text{row}_2 : \rightarrow \]

\[
\begin{pmatrix}
2 & 4 & 4 \\
0 & 1 & -1 \\
0 & 0 & 7
\end{pmatrix}
\]

\[\left(\begin{array}{c}
2 \\
0 \\
0
\end{array} \right)
\]

\[\left(\begin{array}{c}
4 \\
1 \\
0
\end{array} \right)
\]

\[\left(\begin{array}{c}
-1 \\
0 \\
7
\end{array} \right)
\]

\[\left(\begin{array}{c}
2 \\
0 \\
-7
\end{array} \right)
\]

\[\left(\begin{array}{c}
0 \\
0 \\
3
\end{array} \right)
\]

\[\text{Second transformation is as follows:}
\]

\[[A_1, b_1] \rightarrow [M_2 A_1, M_2 b_1] \]

\[M_2 = I - v^{(2)} e^T_2 \]

\[v^{(2)} = \left(\begin{array}{c} 0 \\ 0 \\ 3 \end{array} \right) \]

\[\text{Triangular system} \quad \text{Solve.} \]
$A_k = k$
ALGORITHM : 2. Gaussian Elimination

1. For $k = 1 : n - 1$ Do:
2. For $i = k + 1 : n$ Do:
3. piv := a_{ik}/a_{kk}
4. For $j := k + 1 : n + 1$ Do:
5. $a_{ij} := a_{ij} - piv \times a_{kj}$
6. End
6. End
7. End

Operation count:

$$T = \sum_{k=1}^{n-1} \sum_{i=k+1}^{n} [1 + \sum_{j=k+1}^{n+1} 2] = \sum_{k=1}^{n-1} \sum_{i=k+1}^{n} (2(n-k) + 3) = \ldots$$

Complete the above calculation. Order of the cost?
The LU factorization

Now ignore the right-hand side from the transformations.

Observation: Gaussian elimination is equivalent to $n - 1$ successive Gaussian transformations, i.e., multiplications with matrices of the form $M_k = I - v^{(k)} e^T_k$, where the first k components of $v^{(k)}$ equal zero.

Set $A_0 \equiv A$

\[
A \rightarrow M_1 A_0 = A_1 \rightarrow M_2 A_1 = A_2 \rightarrow M_3 A_2 = A_3 \cdots \\
\rightarrow M_{n-1} A_{n-2} = A_{n-1} \equiv U
\]

Last $A_k \equiv U$ is an upper triangular matrix.
At each step we have: \(A_k = M_{k+1}^{-1} A_{k+1} \). Therefore:

\[
A_0 = M_1^{-1} A_1 \\
= M_1^{-1} M_2^{-1} A_2 \\
= M_1^{-1} M_2^{-1} M_3^{-1} A_3 \\
= \ldots \\
= M_1^{-1} M_2^{-1} M_3^{-1} \cdots M_{n-1}^{-1} A_{n-1}
\]

\[
L = M_1^{-1} M_2^{-1} M_3^{-1} \cdots M_{n-1}^{-1}
\]

Note: \(L \) is **Lower triangular**, \(A_{n-1} \) is **upper triangular**

LU decomposition: \(A = LU \)
How to get L?

\[L = M_1^{-1}M_2^{-1}M_3^{-1} \cdots M_{n-1}^{-1} \]

- Consider only the first 2 matrices in this product.
- Note \(M_k^{-1} = (I - v^{(k)}e_k^T)^{-1} = (I + v^{(k)}e_k^T) \). So:
 \[M_1^{-1}M_2^{-1} = (I + v^{(1)}e_1^T)(I + v^{(2)}e_2^T) = I + v^{(1)}e_1^T + v^{(2)}e_2^T. \]
- Generally,
 \[M_1^{-1}M_2^{-1} \cdots M_k^{-1} = I + v^{(1)}e_1^T + v^{(2)}e_2^T + \cdots v^{(k)}e_k^T \]

The \(L \) factor is a lower triangular matrix with ones on the diagonal. Column \(k \) of \(L \), contains the multipliers \(l_{ik} \) used in the \(k \)-th step of Gaussian elimination.
A matrix A has an LU decomposition if

$$\det(A(1: k, 1: k)) \neq 0 \quad \text{for} \quad k = 1, \cdots, n - 1.$$

In this case, the determinant of A satisfies:

$$\det A = \det(U) = \prod_{i=1}^{n} u_{ii}$$

If, in addition, A is nonsingular, then the LU factorization is unique.
Practical use: Show how to use the LU factorization to solve linear systems with the same matrix A and different b's.

LU factorization of the matrix $A = \begin{pmatrix} 2 & 4 & 4 \\ 1 & 5 & 6 \\ 1 & 3 & 1 \end{pmatrix}$?

Determinant of A?

True or false: “Computing the LU factorization of matrix A involves more arithmetic operations than solving a linear system $Ax = b$ by Gaussian elimination”.
Gauss-Jordan Elimination

Principle of the method: We will now transform the system into one that is even easier to solve than triangular systems, namely a diagonal system. The method is very similar to Gaussian Elimination. It is just a bit more expensive.

Back to original system. Step 1 must transform:

\[
\begin{array}{ccc|c}
2 & 4 & 4 & 2 \\
1 & 3 & 1 & 1 \\
1 & 5 & 6 & -6 \\
\end{array}
\]

into:

\[
\begin{array}{ccc|c}
\text{x} & \text{x} & \text{x} & \text{x} \\
0 & \text{x} & \text{x} & \text{x} \\
0 & \text{x} & \text{x} & \text{x} \\
\end{array}
\]
\[
\begin{align*}
\text{row}_2 & := \text{row}_2 - 0.5 \times \text{row}_1: \\
\begin{array}{cccc}
2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
1 & 5 & 6 & -6 \\
\end{array} & \quad \begin{array}{cccc}
2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
0 & 3 & 4 & -7 \\
\end{array} \\
\text{row}_3 & := \text{row}_3 - 0.5 \times \text{row}_1: \\
\begin{array}{cccc}
2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
0 & 3 & 4 & -7 \\
\end{array} & \quad \begin{array}{cccc}
x & 0 & x & x \\
x & 0 & x & x \\
0 & 0 & x & x \\
\end{array} \\
\text{Step 2:} & \\
\begin{array}{cccc}
2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
0 & 3 & 4 & -7 \\
\end{array} & \quad \begin{array}{cccc}
x & 0 & x & x \\
x & 0 & x & x \\
0 & 0 & x & x \\
\end{array} \\
\text{row}_1 & := \text{row}_1 - 4 \times \text{row}_2: \\
\begin{array}{cccc}
2 & 0 & 8 & 2 \\
0 & 1 & -1 & 0 \\
0 & 3 & 4 & -7 \\
\end{array} & \quad \begin{array}{cccc}
2 & 0 & 8 & 2 \\
0 & 1 & -1 & 0 \\
0 & 0 & 7 & -7 \\
\end{array} \\
\text{row}_3 & := \text{row}_3 - 3 \times \text{row}_2: \\
\begin{array}{cccc}
2 & 0 & 8 & 2 \\
0 & 1 & -1 & 0 \\
0 & 0 & 7 & -7 \\
\end{array}
\end{align*}
\]
There is now a third step:

To transform:

\[
\begin{bmatrix}
2 & 0 & 8 & 2 \\
0 & 1 & -1 & 0 \\
0 & 0 & 7 & -7 \\
\end{bmatrix}
\]

into:

\[
\begin{bmatrix}
x & 0 & 0 & x \\
0 & x & 0 & x \\
0 & 0 & x & x \\
\end{bmatrix}
\]

\[row_1 := row_1 - \frac{8}{7} \times row_3:\] \[row_2 := row_2 - \frac{-1}{7} \times row_3:\]

\[
\begin{bmatrix}
2 & 0 & 0 & 10 \\
0 & 1 & -1 & 0 \\
0 & 0 & 7 & -7 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
2 & 0 & 0 & 10 \\
0 & 1 & 0 & 1 \\
0 & 0 & 7 & -7 \\
\end{bmatrix}
\]

Solution: \(x_3 = -1; \ x_2 = -1; \ x_1 = 5\)
ALGORITHM 3. Gauss-Jordan elimination

1. For \(k = 1 : n \) Do:
2. For \(i = 1 : n \) and if \(i! = k \) Do:
3. \(\text{piv} := a_{ik}/a_{kk} \)
4. For \(j := k + 1 : n + 1 \) Do:
5. \(a_{ij} := a_{ij} - \text{piv} \ast a_{kj} \)
6. End
6. End
7. End

Operation count:

\[
T = \sum_{k=1}^{n} \sum_{i=1}^{n-1} [1 + \sum_{j=k+1}^{n+1} 2] = \sum_{k=1}^{n-1} \sum_{i=1}^{n-1} (2(n - k) + 3) = \cdots
\]

Complete the above calculation. Order of the cost? How does it compare with Gaussian Elimination?
function x = gaussj (A, b)
%---
% function x = gaussj (A, b)
% solves A x = b by Gauss-Jordan elimination
%---
n = size(A,1) ;
A = [A,b];
for k=1:n
 for i=1:n
 if (i ~= k)
 piv = A(i,k) / A(k,k) ;
 A(i,k+1:n+1) = A(i,k+1:n+1) - piv*A(k,k+1:n+1);
 end
 end
end
x = A(:,n+1) ./ diag(A) ;
Gaussian Elimination: Partial Pivoting

Consider again Gaussian Elimination for the linear system

\[
\begin{align*}
2x_1 + 2x_2 + 4x_3 &= 2 \\
x_1 + x_2 + x_3 &= 1 \\
x_1 + 4x_2 + 6x_3 &= -5
\end{align*}
\]

Or:

\[
\begin{bmatrix}
2 & 2 & 4 & 2 \\
1 & 1 & 1 & 1 \\
1 & 4 & 6 & -5
\end{bmatrix}
\]

\[
\begin{align*}
\text{row}_2 &:= \text{row}_2 - \frac{1}{2} \times \text{row}_1: \\
\text{row}_3 &:= \text{row}_3 - \frac{1}{2} \times \text{row}_1:
\end{align*}
\]

\[
\begin{bmatrix}
2 & 2 & 4 & 2 \\
0 & 0 & -1 & 0 \\
1 & 4 & 6 & -5
\end{bmatrix}
\]

\[
\begin{bmatrix}
2 & 2 & 4 & 2 \\
0 & 0 & -1 & 0 \\
0 & 3 & 4 & -6
\end{bmatrix}
\]

➤ Pivot \(a_{22}\) is zero. Solution:

permute rows 2 and 3:

\[
\begin{bmatrix}
2 & 2 & 4 & 2 \\
0 & 3 & 4 & -6 \\
0 & 0 & -1 & 0
\end{bmatrix}
\]
Partial Pivoting

General situation:

Always permute row k with row l such that

$$|a_{lk}| = \max_{i=k,...,n} |a_{ik}|$$

More ‘stable’ algorithm.
function x = guassp (A, b)
% function x = guassp (A, b)
% solves A x = b by Gaussian elimination with
% partial pivoting/

n = size(A,1) ;
A = [A,b]
for k=1:n-1
 [t, ip] = max(abs(A(k:n,k)));
 ip = ip+k-1 ;
 % swap
 temp = A(k,k:n+1) ;
 A(k,k:n+1) = A(ip,k:n+1);
 A(ip,k:n+1) = temp;
 for i=k+1:n
 piv = A(i,k) / A(k,k) ;
 A(i,k+1:n+1) = A(i,k+1:n+1) - piv*A(k,k+1:n+1);
 end
end
x = backsolv(A,A(:,n+1));
Pivoting and permutation matrices

A permutation matrix is a matrix obtained from the identity matrix by permuting its rows.

For example for the permutation \(\pi = \{3, 1, 4, 2\} \) we obtain

\[
P = \begin{pmatrix}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{pmatrix}
\]

Important observation: the matrix \(PA \) is obtained from \(A \) by permuting its rows with the permutation \(\pi \)

\[
(PA)_{i,:} = A_{\pi(i),:}
\]
What is the matrix PA when

$$P = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} \quad A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 0 & -1 & 2 \\ -3 & 4 & -5 & 6 \end{pmatrix}$$

Any permutation matrix is the product of interchange permutations, which only swap two rows of I.

Notation: $E_{ij} =$ Identity with rows i and j swapped
Example: To obtain $\pi = \{3, 1, 4, 2\}$ from $\pi = \{1, 2, 3, 4\}$ – we need to swap $\pi(2) \leftrightarrow \pi(3)$ then $\pi(3) \leftrightarrow \pi(4)$ and finally $\pi(1) \leftrightarrow \pi(2)$. Hence:

$$P = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} = E_{1,2} \times E_{3,4} \times E_{2,3}$$

In the previous example where

$$>> A = [\begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 0 & -1 & 2 \\ -3 & 4 & -5 & 6 \end{bmatrix}]$$

Matlab gives $\det(A) = -896$. What is $\det(PA)$?
At each step of G.E. with partial pivoting:

\[M_{k+1} E_{k+1} A_k = A_{k+1} \]

where \(E_{k+1} \) encodes a swap of row \(k + 1 \) with row \(l > k + 1 \).

Notes: (1) \(E_i^{-1} = E_i \) and (2) \(M_j^{-1} \times E_{k+1} = E_{k+1} \times \tilde{M}_j^{-1} \)

for \(k \geq j \), where \(\tilde{M}_j \) has a permuted Gauss vector:

\[
(I + v^{(j)} e_j^T) E_{k+1} = E_{k+1} (I + E_{k+1} v^{(j)} e_j^T) \\
\equiv E_{k+1} (I + \tilde{v}^{(j)} e_j^T) \\
\equiv E_{k+1} \tilde{M}_j
\]

Here we have used the fact that above row \(k + 1 \), the permutation matrix \(E_{k+1} \) looks just like an identity matrix.
Result:

\[A_0 = E_1 M_1^{-1} A_1 \]
\[= E_1 M_1^{-1} E_2 M_2^{-1} A_2 = E_1 E_2 \tilde{M}_1^{-1} M_2^{-1} A_2 \]
\[= E_1 E_2 \tilde{M}_1^{-1} M_2^{-1} E_3 M_3^{-1} A_3 \]
\[= E_1 E_2 E_3 \tilde{M}_1^{-1} \tilde{M}_2^{-1} M_3^{-1} A_3 \]
\[= \ldots \]
\[= E_1 \cdots E_{n-1} \times \tilde{M}_1^{-1} \tilde{M}_2^{-1} \tilde{M}_3^{-1} \cdots \tilde{M}_{n-1}^{-1} \times A_{n-1} \]

▶ In the end

\[PA = LU \text{ with } P = E_{n-1} \cdots E_1 \]
Error Analysis

If no zero pivots are encountered during Gaussian elimination (no pivoting) then the computed factors \hat{L} and \hat{U} satisfy

$$\hat{L}\hat{U} = A + H$$

with

$$|H| \leq 3(n - 1) \times u \left(|A| + |\hat{L}| |\hat{U}|\right) + O(u^2)$$

Solution \hat{x} computed via $\hat{L}\hat{y} = b$ and $\hat{U}\hat{x} = \hat{y}$ is s. t.

$$(A + E)\hat{x} = b$$

with

$$|E| \leq nu \left(3|A| + 5 |\hat{L}| |\hat{U}|\right) + O(u^2)$$
“Backward” error estimate.

| \(\hat{L} | \) and | \(\hat{U} | \) are not known in advance – they can be large.

What if partial pivoting is used?

Permutations introduce no errors. Equivalent to standard LU factorization on matrix \(PA \).

| \(\hat{L} | \) is small since \(l_{ij} \leq 1 \). Therefore, only \(U \) is “uncertain”

In practice partial pivoting is “stable” – i.e., it is highly unlikely to have a very large \(U \).

Read Lecture 22 of Text (especially last 3 subsections) about stability of Gaussian Elimination with partial pivoting.