Background: Linear systems

The Problem: A is an n × n matrix, and b a vector of \(\mathbb{R}^n \). Find \(x \) such that:

\[
Ax = b
\]

\(x \) is the unknown vector, \(b \) the right-hand side, and \(A \) is the coefficient matrix.

Example:

1. Let \(A = \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix} \) \(b = \begin{pmatrix} 1 \\ 8 \end{pmatrix} \). \(A \) is nonsingular ➤ a unique solution \(x = \begin{pmatrix} 0.5 \\ 2 \end{pmatrix} \).

Example:

2. Case where \(A \) is singular & \(b \in \text{Ran}(A) \):

\[
A = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.
\]

➤ infinitely many solutions: \(x(\alpha) = \begin{pmatrix} 0.5 \\ \alpha \end{pmatrix} \) \(\forall \alpha \).

Example:

3. Let \(A \) same as above, but \(b = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \).

➤ No solutions since 2nd equation cannot be satisfied.
Triangular linear systems

Example:

\[
\begin{pmatrix}
2 & 4 & 4 \\
0 & 5 & -2 \\
0 & 0 & 2
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix} =
\begin{pmatrix}
2 \\
1 \\
4
\end{pmatrix}
\]

- One equation can be trivially solved: the last one. \(x_3 = 2 \)
- \(x_3 \) is known we can now solve the 2nd equation:
 \[5x_2 - 2x_3 = 1 \rightarrow 5x_2 - 2 \times 4 = 1 \rightarrow x_2 = 1 \]
- Finally \(x_1 \) can be determined similarly:
 \[2x_1 + 4x_2 + 4x_3 = 2 \rightarrow \ldots \rightarrow x_1 = -5 \]

ALGORITHM : 1. Back-Substitution algorithm

For \(i = n : -1 : 1 \) do:

\[
t := b_i
\]

For \(j = i + 1 : n \) do

\[
t := t - (a_{i,i+1:n}, x_{i+1:n})
\]

End

\[
x_i = t/a_{ii}
\]

End

- We must require that each \(a_{ii} \neq 0 \)
- Operation count?
- Round-off error (use previous results for \((\cdot, \cdot)\)?)

Backward error analysis for the triangular solve

The computed solution \(\hat{x} \) of the triangular system \(Ux = b \) computed by the previous algorithm satisfies:

\[(U + E)\hat{x} = b\]

with

\[|E| \leq n \, u \, |U| + O(u^2)\]

- Backward error analysis. Computed \(\hat{x} \) solves a slightly perturbed system.
- Backward error not large in general. It is said that triangular solve is “backward stable”.

Column version of back-substitution:

Back-Substitution algorithm. Column version

For \(j = n : -1 : 1 \) do:

\[
x_j := b_j / a_{jj}
\]

For \(i = 1 : j - 1 \) do

\[
b_i := b_i - x_j * a_{ij}
\]

End

End

- Justify the above algorithm [Show that it does indeed compute the solution]
- See text for analogous algorithms for lower triangular systems.
Linear Systems of Equations: Gaussian Elimination

Back to arbitrary linear systems.

Principle of the method: Since triangular systems are easy to solve, we will transform a linear system into one that is triangular.

Main operation: combine rows so that zeros appear in the required locations to make the system triangular.

Notation: use a Tableau:

\[
\begin{align*}
2x_1 + 4x_2 + 4x_3 &= 2 \\
x_1 + 3x_2 + x_3 &= 1 \\
x_1 + 5x_2 + 6x_3 &= -6
\end{align*}
\]

Tableau:

\[
\begin{pmatrix}
2 & 4 & 4 & 2 \\
1 & 3 & 1 & 1 \\
1 & 5 & 6 & -6
\end{pmatrix}
\]

Example: Replace row2 by: row2 - \(\frac{1}{2} \) row1:

\[
\begin{pmatrix}
2 & 4 & 4 & 2 \\
1 & 3 & 1 & 1 \\
1 & 5 & 6 & -6
\end{pmatrix} \rightarrow \begin{pmatrix}
2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
1 & 5 & 6 & -6
\end{pmatrix}
\]

This is equivalent to:

\[
\begin{pmatrix}
1 & 0 & 0 \\
-\frac{1}{2} & 1 & 0 \\
-\frac{1}{2} & 0 & 1
\end{pmatrix} \times \begin{pmatrix}
2 & 4 & 4 & 2 \\
1 & 3 & 1 & 1 \\
1 & 5 & 6 & -6
\end{pmatrix} = \begin{pmatrix}
2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
0 & 3 & 4 & -7
\end{pmatrix}
\]

The left-hand matrix is of the form

\[M = I - ve_1^T\] with \(v = \left(\frac{1}{2} \right) \)

New system \(A_1x = b_1 \). Step 2 must now transform:

\[
\begin{pmatrix}
2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
0 & 3 & 4 & -7
\end{pmatrix} \rightarrow \begin{pmatrix}
2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
0 & 0 & x & x
\end{pmatrix}
\]

Equivalent to

\[
\begin{pmatrix}
1 & 0 & 0 \\
-\frac{1}{2} & 1 & 0 \\
-\frac{1}{2} & 0 & 1
\end{pmatrix} \times \begin{pmatrix}
2 & 4 & 4 & 2 \\
1 & 3 & 1 & 1 \\
1 & 5 & 6 & -6
\end{pmatrix} = \begin{pmatrix}
2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
0 & 3 & 4 & -7
\end{pmatrix}
\]

[\(A, b \) \rightarrow [M_1A, M_1b]; \ M_1 = I - v^{(1)}e_1^T; \ v^{(1)} = \left(\frac{1}{2}, \frac{1}{2} \right) \]

New system \(A_1x = b_1 \). Step 2 must now transform:

\[
\begin{pmatrix}
2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
0 & 3 & 4 & -7
\end{pmatrix} \rightarrow \begin{pmatrix}
2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
0 & 0 & x & x
\end{pmatrix}
\]

\[\text{Text: 20-22; AB: 1.2.1–1.2.6; GvL 3.} \]
\[\text{row}_3 := \text{row}_3 - 3 \times \text{row}_2 : \rightarrow \begin{bmatrix} 2 & 4 & 4 & 2 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 7 & -7 \end{bmatrix} \]

- Equivalent to
\[
\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{bmatrix} \times \begin{bmatrix} 2 & 4 & 4 & 2 \\ 0 & 1 & -1 & 0 \\ 0 & 3 & 4 & -7 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 4 & 2 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 7 & -7 \end{bmatrix}
\]

- Second transformation is as follows:
\[
[A_1, b_1] \rightarrow [M_2 A_1, M_2 b_1]
M_2 = I - v(2)^T e_2 v(2) = \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix}
\]

- Triangular system

\[4-13\] Text: 20-22; AB: 1.2.1–1.2.6; GvL 3.

\[\{1,3,5\}–\text{Systems} \]

ALGORITHM : 2. Gaussian Elimination

1. For \(k = 1 : n - 1 \) Do:
2. For \(i = k + 1 : n \) Do:
3. \(\text{piv} := a_{ik}/a_{kk} \)
4. For \(j := k + 1 : n + 1 \) Do:
5. \(a_{ij} := a_{ij} - \text{piv} \times a_{kj} \)
6. End
7. End
8. End

- Operation count:
\[
T = \sum_{k=1}^{n-1} \sum_{i=k+1}^{n} \left[1 + \sum_{j=k+1}^{n+1} 2\right] = \sum_{k=1}^{n-1} \sum_{i=k+1}^{n} (2(n-k)+3) = \ldots
\]

- Complete the above calculation. Order of the cost?

\[4-14\] Text: 20-22; AB: 1.2.1–1.2.6; GvL 3.

The LU factorization

- Now ignore the right-hand side from the transformations.

\[\text{Observation:}\] Gaussian elimination is equivalent to \(n - 1 \) successive Gaussian transformations, i.e., multiplications with matrices of the form \(M_k = I - v(k)^T e_k v(k) \), where the first \(k \) components of \(v(k) \) equal zero.

- Set \(A_0 \equiv A \)

\[A \rightarrow M_1 A_0 = A_1 \rightarrow M_2 A_1 = A_2 \rightarrow M_3 A_2 = A_3 \cdots \rightarrow M_{n-1} A_{n-2} = A_{n-1} \equiv U\]

- Last \(A_k \equiv U \) is an upper triangular matrix.

\[4-15\] Text: 20-22; AB: 1.2.1–1.2.6; GvL 3.

\[\{1,3,5\}–\text{Systems} \]

\[4-16\] Text: 20-22; AB: 1.2.1–1.2.6; GvL 3.
At each step we have: \(A_k = M_{k+1}^{-1}A_{k+1} \). Therefore:

\[
A_0 = M_1^{-1}A_1 \\
= M_1^{-1}M_2^{-1}A_2 \\
= M_1^{-1}M_2^{-1}M_3^{-1}A_3 \\
= \ldots \\
= M_1^{-1}M_2^{-1}M_3^{-1} \cdots M_{n-1}A_{n-1}
\]

\[L = M_1^{-1}M_2^{-1}M_3^{-1} \cdots M_{n-1} \]

Note: \(L \) is Lower triangular, \(A_{n-1} \) is upper triangular.

LU decomposition: \(A = LU \)

Consider only the first 2 matrices in this product.

Note \(M_k^{-1} = (I - v^{(k)}e_k^T)^{-1} = (I + v^{(k)}e_k^T) \). So:

\[
M_1^{-1}M_2^{-1} = (I + v^{(1)}e_1^T)(I + v^{(2)}e_2^T) = I + v^{(1)}e_1^T + v^{(2)}e_2^T.
\]

Generally,

\[
M_1^{-1}M_2^{-1} \cdots M_k^{-1} = I + v^{(1)}e_1^T + v^{(2)}e_2^T + \cdots v^{(k)}e_k^T
\]

The \(L \) factor is a lower triangular matrix with ones on the diagonal. Column \(k \) of \(L \), contains the multipliers \(l_{ik} \) used in the \(k \)-th step of Gaussian elimination.

A matrix \(A \) has an LU decomposition if

\[
\det(A(1:k,1:k)) \neq 0 \quad \text{for} \quad k = 1, \ldots, n-1.
\]

In this case, the determinant of \(A \) satisfies:

\[
\det A = \det(U) = \prod_{i=1}^{n} u_{ii}
\]

If, in addition, \(A \) is nonsingular, then the LU factorization is unique.

Practical use: Show how to use the LU factorization to solve linear systems with the same matrix \(A \) and different \(b \)'s.

LU factorization of the matrix \(A = \begin{pmatrix} 2 & 4 & 4 \\ 1 & 5 & 6 \\ 1 & 3 & 1 \end{pmatrix} \)?

Determinant of \(A \)?

True or false: “Computing the LU factorization of matrix \(A \) involves more arithmetic operations than solving a linear system \(Ax = b \) by Gaussian elimination”.

Practical use: Show how to use the LU factorization to solve linear systems with the same matrix \(A \) and different \(b \)'s.
Gauss-Jordan Elimination

Principle of the method: We will now transform the system into one that is even easier to solve than triangular systems, namely a diagonal system. The method is very similar to Gaussian Elimination. It is just a bit more expensive.

Back to original system. Step 1 must transform:

\[
\begin{bmatrix}
2 & 4 & 4 & 2 \\
1 & 3 & 1 & 1 \\
1 & 5 & 6 & -6
\end{bmatrix}
\]

into:

\[
\begin{bmatrix}
x & x & x & x \\
x & x & x & x \\
x & x & x & x
\end{bmatrix}
\]

\[
\text{row} 1 := \text{row} 1 - 4 \times \text{row} 2; \\
\text{row} 2 := \text{row} 2 - 0.5 \times \text{row} 1; \\
\text{row} 3 := \text{row} 3 - 0.5 \times \text{row} 1;
\]

\[
\begin{bmatrix}
2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
1 & 5 & 6 & -6
\end{bmatrix}
\]

\[
\begin{bmatrix}
x & 0 & x & x \\
o & x & x & x \\
o & 0 & x & x
\end{bmatrix}
\]

Step 2:

\[
\begin{bmatrix}
2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
0 & 3 & 4 & -7
\end{bmatrix}
\]

into:

\[
\begin{bmatrix}
x & 0 & 0 & x \\
0 & x & 0 & x \\
0 & 0 & x & x
\end{bmatrix}
\]

\[
\begin{bmatrix}
2 & 0 & 8 & 2 \\
0 & 1 & -1 & 0 \\
0 & 3 & 4 & -7
\end{bmatrix}
\]

\[
\begin{bmatrix}
2 & 0 & 8 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 7 & -7
\end{bmatrix}
\]

There is now a third step:

To transform:

\[
\begin{bmatrix}
2 & 0 & 8 & 2 \\
0 & 1 & -1 & 0 \\
0 & 3 & 4 & -7
\end{bmatrix}
\]

into:

\[
\begin{bmatrix}
2 & 0 & 0 & 10 \\
0 & 1 & -1 & 0 \\
0 & 0 & 7 & -7
\end{bmatrix}
\]

Solution: \(x_3 = -1; \ x_2 = -1; \ x_1 = 5\)

ALGORITHM : 3. Gauss-Jordan elimination

1. For \(k = 1 : n\) Do:
2. For \(i = 1 : n\) and if \(i! = k\) Do :
3. \(\text{piv} := a_{ik} / a_{kk}\)
4. For \(j := k + 1 : n + 1\) Do :
5. \(a_{ij} := a_{ij} - \text{piv} * a_{kj}\)
6. End
7. End

\(\text{Operation count:}\)

\[
T = \sum_{k=1}^{n} \sum_{i=1}^{n-1} [1 + \sum_{j=k+1}^{n+1} 2] = \sum_{k=1}^{n-1} \sum_{i=1}^{n-1} (2(n - k) + 3) = \cdots
\]

Complete the above calculation. Order of the cost? How does it compare with Gaussian Elimination?
function x = gaussj(A, b)
%---
% function x = gaussj(A, b)
% solves A x = b by Gauss-Jordan elimination
%---
n = size(A,1);
A = [A,b];
for k=1:n
 for i=1:n
 if (i ~= k)
 piv = A(i,k) / A(k,k);
 A(i,k+1:n+1) = A(i,k+1:n+1) - piv*A(k,k+1:n+1);
 end
 end
end
x = A(:,n+1) ./ diag(A);

Gaussian Elimination: Partial Pivoting

Consider again Gaussian Elimination for the linear system
\[
\begin{align*}
2x_1 + 2x_2 + 4x_3 &= 2 \\
x_1 + x_2 + x_3 &= 1 \\
x_1 + 4x_2 + 6x_3 &= -5
\end{align*}
\]
Or:
\[
\begin{bmatrix}
2 & 2 & 4 & 2 \\
1 & 1 & 1 & 1 \\
1 & 4 & 6 & -5
\end{bmatrix}
\]

row_2 := row_2 - \frac{1}{2} \times row_1:
row_3 := row_3 - \frac{1}{2} \times row_1:

\[
\begin{bmatrix}
2 & 2 & 4 & 2 \\
0 & 0 & -1 & 0 \\
1 & 4 & 6 & -5
\end{bmatrix}
\]

• Pivot a_{22} is zero. Solution:
permute rows 2 and 3:
\[
\begin{bmatrix}
2 & 2 & 4 & 2 \\
0 & 0 & 3 & 4 \\
0 & 0 & 1 & 0
\end{bmatrix}
\]

function x = gaussp(A, b)
%---
% function x = guassp (A, b)
% solves A x = b by Gaussian elimination with
% partial pivoting/
%---
n = size(A,1);
A = [A,b];
for k=1:n-1
 [t, ip] = max(abs(A(k:n,k)));
 ip = ip+k-1;
 temp = A(k,k:n+1);
 A(k,k:n+1) = temp;
 for i=k+1:n
 piv = A(i,k) / A(k,k);
 A(i,k+1:n+1) = A(i,k+1:n+1) - piv*A(k,k+1:n+1);
 end
end
x = backsolv(A,A(:,n+1));

Gaussian Elimination with Partial Pivoting

Partial Pivoting

• General situation:

Always permute row k with row l such that

\[|a_{ik}| = \max_{i=k,...,n} |a_{ik}|\]

• More 'stable' algorithm.
Pivoting and permutation matrices

A permutation matrix is a matrix obtained from the identity matrix by permuting its rows.

For example for the permutation \(\pi = \{3, 1, 4, 2\} \) we obtain

\[
P = \begin{pmatrix}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{pmatrix}
\]

Important observation: the matrix \(PA \) is obtained from \(A \) by permuting its rows with the permutation \(\pi \):

\[(PA)_{i,:} = A_{\pi(i,:),}
\]

Any permutation matrix is the product of interchange permutations, which only swap two rows of \(I \).

Notation: \(E_{ij} \) = Identity with rows \(i \) and \(j \) swapped

Example: To obtain \(\pi = \{3, 1, 4, 2\} \) from \(\pi = \{1, 2, 3, 4\} \) we need to swap \(\pi(2) \leftrightarrow \pi(3) \) then \(\pi(3) \leftrightarrow \pi(4) \) and finally \(\pi(1) \leftrightarrow \pi(2) \). Hence:

\[
P = \begin{pmatrix}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{pmatrix}
= E_{1,2} \times E_{3,4} \times E_{2,3}
\]

In the previous example where

\[
\begin{bmatrix}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 0 & -1 & 2 \\
-3 & 4 & -5 & 6
\end{bmatrix}
\]

Matlab gives \(\det(A) = -896 \). What is \(\det(PA) \)?
Result:

\[
A_0 = E_1 M_1^{-1} A_1 \\
= E_1 M_1^{-1} E_2 M_2^{-1} A_2 \\
= E_1 E_2 M_1^{-1} M_2^{-1} A_2 \\
= E_1 E_2 M_1^{-1} M_2^{-1} M_3^{-1} A_3 \\
= E_1 E_2 E_3 M_1^{-1} M_2^{-1} M_3^{-1} A_3 \\
= \ldots \\
= E_1 \cdots E_{n-1} \times M_1^{-1} M_2^{-1} M_3^{-1} \cdots M_{n-1}^{-1} \times A_{n-1}
\]

- In the end

\[PA = LU\] with \[P = E_{n-1} \cdots E_1\]

Error Analysis

If no zero pivots are encountered during Gaussian elimination (no pivoting) then the computed factors \(\hat{L}\) and \(\hat{U}\) satisfy

\[
\hat{L}\hat{U} = A + H
\]

with

\[
|H| \leq 3(n - 1) \times u \left(|A| + |\hat{L}| |\hat{U}| \right) + O(u^2)
\]

Solution \(\hat{x}\) computed via \(\hat{L}\hat{y} = b\) and \(\hat{U}\hat{x} = \hat{y}\) is s. t.

\[
(A + E)\hat{x} = b \text{ with }
\]

\[
|E| \leq nu \left(3|A| + 5 |\hat{L}| |\hat{U}| \right) + O(u^2)
\]

- “Backward” error estimate.
 - \(|\hat{L}|\) and \(|\hat{U}|\) are not known in advance – they can be large.
 - What if partial pivoting is used?
 - Permutations introduce no errors. Equivalent to standard LU factorization on matrix \(PA\).
 - \(|\hat{L}|\) is small since \(l_{ij} \leq 1\). Therefore, only \(U\) is “uncertain”
 - In practice partial pivoting is “stable” – i.e., it is highly unlikely to have a very large \(U\).

Read Lecture 22 of Text (especially last 3 subsections) about stability of Gaussian Elimination with partial pivoting.