SPECIAL LINEAR SYSTEMS OF EQUATIONS

- Symmetric positive definite matrices.
- The LDL^T decomposition; The Cholesky factorization
- Banded systems

Positive-Definite Matrices

- A real matrix is said to be positive definite if
 $$(Au, u) > 0 \text{ for all } u \neq 0 \quad u \in \mathbb{R}^n$$

- Let A be a real positive definite matrix. Then there is a scalar $\alpha > 0$ such that
 $$(Au, u) \geq \alpha \|u\|^2.$$

- Consider now the case of Symmetric Positive Definite (SPD) matrices.
- Consequence 1: A is nonsingular
- Consequence 2: the eigenvalues of A are (real) positive

A few properties of SPD matrices

- Diagonal entries of A are positive
- Recall: the k-th principal submatrix A_k is the $k \times k$ submatrix of A with entries $a_{ij}, 1 \leq i, j \leq k$ (Matlab: $A(1: k, 1: k)$).
 - Each A_k is SPD
 - Consequence: $\text{Det}(A_k) > 0$ for $k = 1, \cdots, n$.
 - For any $n \times k$ matrix X of rank k, the matrix X^TA is SPD.

- The mapping $x, y \mapsto (x, y)_A \equiv (Ax, y)$ defines a proper inner product on \mathbb{R}^n. The associated norm, denoted by $\| \cdot \|_A$, is called the energy norm, or simply the A-norm:
 $$\|x\|_A = (Ax, x)^{1/2} = \sqrt{x^TAx}.$$

Related measure in Machine Learning, Vision, Statistics: the Mahalanobis distance between two vectors:

$$d_A(x, y) = \|x - y\|_A = \sqrt{(x - y)^TA(x - y)}$$

Appropriate distance (measured in # standard deviations) if x is a sample generated by a Gaussian distribution with covariance matrix A and center y.

7-3 7-4

Text: 23; AB: 1.3.1–2.1.5.1–4; GvL 4 – SPD
More terminology

- A matrix is Positive Semi-Definite if:
 \[(Au, u) \geq 0 \text{ for all } u \in \mathbb{R}^n\]
- Eigenvalues of symmetric positive semi-definite matrices are real nonnegative, i.e., ...
- ... A can be singular [If not, A is SPD]
- A matrix is said to be Negative Definite if \(-A\) is positive definite. Similar definition for Negative Semi-Definite
- A matrix that is neither positive semi-definite nor negative semi-definite is indefinite

Show: that if \(A^T = A\) and \((Ax, x) = 0 \forall x\) then \(A = 0\)

Show: \(A\) is indefinite iff \(\exists x, y : (Ax, x)(Ay, y) < 0\)

The LDL\(^T\) and Cholesky factorizations

The LU factorization of an SPD matrix \(A\) exists

- Let \(A = LU\) and \(D = \text{diag}(U)\) and set \(M \equiv (D^{-1}U)^T\).

Then \(A = LU = LD(D^{-1}U) = LDM^T\)

- Both \(L\) and \(M\) are unit lower triangular
- Consider \(L^{-1}AL^{-T} = DMTL^{-T}\)
- Matrix on the right is upper triangular. But it is also symmetric. Therefore \(MTL^{-T} = I\) and so \(M = L\)
- The diagonal entries of \(D\) are positive [Proof: consider \(L^{-1}AL^{-T} = D\)]. In the end:
\[
A = LDL^T = GGT \quad \text{where } G = LD^{1/2}
\]

Row-Cholesky (outer product form)

Scale the rows as the algorithm proceeds. Line 4 becomes
\[
a(i, :) := a(i, :) - [a(k, i)/\sqrt{a(k, k)}) \times [a(k, :) / \sqrt{a(k, k)}]
\]

ALGORITHM : 1. Outer product Cholesky

1. For \(k = 1 : n\) Do:
2. \(A(k, k : n) = A(k, k : n)/\sqrt{A(k, k)}\);
3. For \(i := k + 1 : n\) Do:
4. \(A(i, i : n) = A(i, i : n) - A(k, i) \times A(k, i : n);\)
5. End
6. End

Result: Upper triangular matrix \(U\) such \(A = U^TU\).
Example:

\[A = \begin{pmatrix} 1 & -1 & 2 \\ -1 & 5 & 0 \\ 2 & 0 & 9 \end{pmatrix} \]

Is \(A \) symmetric positive definite?

What is the \(LDL^T \) factorization of \(A \)?

What is the Cholesky factorization of \(A \)?

Column Cholesky

Let \(A = GG^T \) with \(G \) lower triangular.

Then equate \(j \)-th columns:

\[
a(i, j) = \sum_{k=1}^{j} g(j, k)g^T(k, i) \rightarrow
\]

\[
A(:, j) = \sum_{k=1}^{j} G(j, k)G(:, k)
\]

\[
= G(j, j)G(:, j) + \sum_{k=1}^{j-1} G(j, k)G(:, k) \rightarrow
\]

\[
G(j, j)G(:, j) = A(:, j) - \sum_{k=1}^{j-1} G(j, k)G(:, k)
\]

> Assume that first \(j - 1 \) columns of \(G \) already known.

> Compute unscaled column-vector:

\[
v = A(:, j) - \sum_{k=1}^{j-1} G(j, k)G(:, k)
\]

> Notice that \(v(j) \equiv G(j, j)^2 \).

> Compute \(\sqrt{v(j)} \) scale \(v \) to get \(j \)-th column of \(G \).

ALGORITHM : 2. Column Cholesky

1. For \(j = 1 : n \) do
2. For \(k = 1 : j - 1 \) do
3. \[
A(j : n, j) = A(j : n, j) - A(j, k) * A(j : n, k)
\]
4. EndDo
5. If \(A(j, j) \leq 0 \) ExitError("Matrix not SPD")
6. \[
A(j, j) = \sqrt{A(j, j)}
\]
7. \[
A(j + 1 : n, j) = A(j + 1 : n, j) / A(j, j)
\]
8. EndDo

Example:

\[A = \begin{pmatrix} 1 & -1 & 2 \\ -1 & 5 & 0 \\ 2 & 0 & 9 \end{pmatrix} \]
Banded matrices

Banded matrices arise in many applications:

- A has upper bandwidth q if $a_{ij} = 0$ for $j - i > q$.
- A has lower bandwidth p if $a_{ij} = 0$ for $i - j > p$.

Simplest case: tridiagonal $p = q = 1$.

First observation: Gaussian elimination (no pivoting) preserves the initial banded form. Consider first step of Gaussian elimination:

1. For $i = 2 : n$ Do:
2. $a_{i1} := a_{i1} / a_{11}$ (pivots)
3. For $j = 2 : n$ Do:
4. $a_{ij} := a_{ij} - a_{i1} * a_{1j}$
5. End
6. End
7. End

If A has upper bandwidth q and lower bandwidth p then so is the resulting $[L/U]$ matrix. Band form is preserved (induction).

Operation count?

What happens when partial pivoting is used?

If A has lower bandwidth p, upper bandwidth q, and if Gaussian elimination with partial pivoting is used, then the resulting U has upper bandwidth $p + q$. L has at most $p + 1$ nonzero elements per column (bandedness is lost).

Simplest case: tridiagonal $p = q = 1$.

Example:

$$A = \begin{pmatrix}
1 & 1 & 0 & 0 & 0 \\
2 & 1 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 0 \\
0 & 0 & 2 & 1 & 1 \\
0 & 0 & 0 & 2 & 1
\end{pmatrix}$$