2nd Midterm Exam – Wednesday November 18
100 points, 120 minutes, Open book and notes

1. [15 points]
You are given the English sentence “The box contains only red shirts” and different logical expressions:

1. \(\exists x \text{ Shirt}(x) \land \text{InBox}(x) \Rightarrow \text{Red}(x)\)
2. \(\forall x \text{ Shirt}(x) \land \text{Red}(x) \Rightarrow \text{InBox}(x)\)
3. \(\forall x \text{ InBox}(x) \Rightarrow \text{Shirt}(x) \land \text{Red}(x)\)
4. \(\forall x \text{ Shirt}(x) \land \text{InBox}(x) \Rightarrow \text{Red}(x)\)
5. \(\exists x \text{ Shirt}(x) \land \text{InBox}(x) \land \text{Red}(x)\)

1. Is one of the translations from English to logic correct? if yes, which one?
2. For each of the logical sentences that are not a correct translation of the sentence given above, write in English what the logical sentence is actually saying.

2. [15 points]
Specify if each of the following expressions represents correctly the corresponding English statement. If not explain why not and correct it.

1. Every cat owner likes all animals.
 \(\forall x \forall z [\text{Person}(x) \land \exists y \text{ Cat}(y) \rightarrow \text{Owns}(x, y)] \rightarrow \text{Likes}(x, z)\)
2. Anyone who owns a bird does not own any cat.
 \(\forall x \forall y \forall z \text{ Cat}(y) \land \text{Bird}(z) \land \text{Owns}(x, z) \land \neg \text{Owns}(x, y)\)
3. No person would harm a cat.
 \(\forall x \forall y \text{ person}(x) \land \text{cat}(y) \land \neg \text{Harm}(x, y)\)
4. Birds do not like cats.
 \(\forall y \text{ Cat}(y) \land \neg [\exists x \text{ Bird}(x) \land \text{Likes}(x, y)]\)
5. Only birds fly.
 \(\exists x \text{ Bird}(x) \land \text{Flyes}(x)\)

3. [15 points]
Convert these English sentences to predicate calculus, using the following predicates: \(\text{City}(x) = x \) is a city; \(\text{In}(y, x) = x \) is in \(y \); \(\text{FF}(x) = x \) is a fastfood.

1. Every city has a fastfood.
2. At least one city has a fastfood.
3. Fastfoods are in all the cities.
4. McDonald is a fastfood.
5. There is only one fastfood in Morris.
4. [15 points]
Prove by resolution that the following set of propositional clauses is unsatisfiable:

1. \(\neg P \lor \neg Q \lor R \)
2. \(\neg S \lor Z \)
3. \(\neg Z \lor P \)
4. \(S \)
5. \(\neg R \)
6. \(\neg S \lor U \)
7. \(\neg U \lor Q \)

5. [20 points]

1. Write the following statements in predicate calculus:
 1. Trucks are bigger than SUVs.
 2. SUVs are cars.
 3. There is a SUV that is bigger than every car.
 4. An F150 is a truck.
 5. A Camry is a car.
 6. Bigger is transitive, i.e. if \(x \) is bigger than \(y \) and \(y \) is bigger than \(z \) then \(x \) is bigger than \(z \).

2. Convert them to conjunctive normal form. Pay attention to how you skolemize the existentially quantified variable in 3. Recall that a Skolem constant cannot be unified with another constant except itself, but it can be unified with a variable.

3. Prove by resolution that “An F150 is bigger than a Camry.”

6. [10 points]

Answer these questions about CSP briefly but precisely.

1. Describe briefly one advantage and one disadvantage of backtracking search compared to local search for solving CSPs.
2. When solving a CSP, what are the advantages, if any, of including forward checking in backtracking search?

7. [10 points]

Answer these questions about logic briefly but precisely.

1. In propositional logic you can prove that \(KB \models Query \) by showing that \(KB \Rightarrow Query \) is a tautology. Explain why.
2. In predicate calculus, if resolution with refutation fails to produce the empty clause, what can you conclude? Is the same true for propositional calculus? Why?