Weighted graphs

Yourmotharissofat,

Announcements

Midterm graded

HW 2 posted

Will post first part of programming assignment this weekend

Weighted graph

Edges in weighted graph are assigned a weight: $\mathrm{w}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)$, where $\mathrm{v}_{1}, \mathrm{v}_{2}$ in V

If path $\mathrm{p}=\left\langle\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots \mathrm{v}_{\mathrm{k}}>\right.$ then the weight is: $\mathrm{w}(\mathrm{p})=\sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{w}\left(\mathrm{v}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{i}}\right)$

Shortest Path:

$\left.\delta(\mathrm{u}, \mathrm{v}): \min \left\{\mathrm{w}(\mathrm{p}): \mathrm{v}_{0}=\mathrm{u}, \mathrm{v}_{\mathrm{k}}=\mathrm{v}\right)\right\}$

Shortest paths

Today we will look at single-source shorted paths

This finds the shortest path from some starting vertex, s, to any other vertex on the graph (if it exists)

This creates G_{π}, the shortest path tree

Shortest paths

Optimal substructure: Let $\delta\left(\mathrm{v}_{0}, \mathrm{v}_{\mathrm{k}}\right)=\mathrm{p}$,
then for all $0 \leq i \leq j \leq k, \delta\left(v_{i}, v_{j}\right)=p_{i, j}=$
$\left\langle v_{i}, v_{i+1}, \ldots v_{j}\right\rangle$
Proof?

Where have we seen this before?

Shortest paths

Optimal substructure: Let $\delta\left(\mathrm{v}_{0}, \mathrm{v}_{\mathrm{k}}\right)=\mathrm{p}$,
then for all $0 \leq i \leq j \leq k, \delta\left(v_{i}, v_{j}\right)=p_{i, j}=$
$\left\langle\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}, \ldots \mathrm{v}_{\mathrm{j}}\right\rangle$
Proof? Contradiction!
Suppose $w\left(p_{i, j}^{\prime}\right)<p_{i, j}$, then let
$\mathrm{p}_{0, \mathrm{k}}^{\prime}=\mathrm{p}_{0, \mathrm{i}} \mathrm{p}_{\mathrm{i}, \mathrm{j}}^{\prime} \mathrm{p}_{\mathrm{j}, \mathrm{k}}$ then $\mathrm{w}\left(\mathrm{p}_{0, \mathrm{k}}^{\prime}\right)<\mathrm{w}(\mathrm{p})$

Shortest path

We will do the same thing we have done before with BFS and DFS:

Makes a queue and put in/pull out
Two major differences: (1) How to remove from queue (min) (2) Update "grey" vertexes ("relax")

Relaxation

We will only do relaxation on the values v.d (min weight) for vertex v
$\operatorname{Relax}(u, v, w) ~-~(i . e . \min ()$ function) if(v.d > u.d + w(u,v)) v.d = u.d+w(u,v)
V.T=u

Relaxation

We will assume all vertices start with v.d= ∞,v. $\pi=$ NIL except s, $\mathrm{s} . \mathrm{d}=0$

This will take $\mathrm{O}(|\mathrm{V}|)$ time
This will not effect the asymptotic runtime as it will be at least $\mathrm{O}(|\mathrm{V}|)$ to find single-source shortest path

Relaxation

Relaxation properties:

1. $\delta(\mathrm{s}, \mathrm{v}) \leq \delta(\mathrm{s}, \mathrm{u})+\delta(\mathrm{u}, \mathrm{v})$ (triangle inequality)
2. v.d $\geq \delta(\mathrm{s}, \mathrm{v})$, v.d is monotonically decreasing
3. if no path, v.d $=\delta(s, v)=\infty$
4. if $\delta(\mathrm{s}, \mathrm{v})$, when $(\mathrm{v} . \pi) . \mathrm{d}=\delta(\mathrm{s}, \mathrm{v} . \pi)$ then
relax(v. $\pi, \mathrm{v}, \mathrm{w})$ causes $\mathrm{v} . \mathrm{d}=\delta(\mathrm{s}, \mathrm{v})$
5. if $\delta\left(\mathrm{v}_{0}, \mathrm{v}_{\mathrm{k}}\right)=\mathrm{p}_{0, \mathrm{k}}$, then when relaxed in order $\left(\mathrm{v}_{0}, \mathrm{v}_{1}\right),\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right), \ldots\left(\mathrm{v}_{\mathrm{k}-1}, \mathrm{v}_{\mathrm{k}}\right)$ then $v_{k} \cdot d=\delta\left(v_{0}, v_{k}\right)$ even if other relax happen
6. when $v . d=\delta(s, v)$ for all v in V, G_{π} is shortest path tree rooted at s

Directed Acyclic Graphs

DFS can do topological sort (DAG)

(b) socks
undershorts \rightarrow pants \rightarrow shoes

Run DFS, sort in decreasing finish time

Directed Acyclic Graphs

DAG-shortest-paths(G,w,s)
topologically sort G
initialize graph from s
for each u in V in topological order
for each v in G.Adj[u]
Relax(u,v,w)
Runtime: $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$

+
(a)

(c)

(e)

(g)

Directed Acyclic Graphs

Correctness:

Prove it!

Directed Acyclic Graphs

Correctness:
By definition of topological order,
When relaxing vertex v, we have
already relaxed any preceding
vertices

So by relaxation property 5, we have found the shortest path to all v

BFS (unweighted graphs)

Create FIFO queue to explore unvisited nodes

Dijkstra

Dijkstra's algorithm is the BFS equivalent for non-negative weight graphs

Dijkstra

Dijkstra(G,w,s)

initialize G from s
Q = G.V, S = empty
while Q not empty
u = Extract-min(Q)
S = S U \{u\}
for each vint G.Adj[u] relax(u,v,w)

Dijkstra
Runtime?

Dijkstra

Runtime:

Extract-min() run |V| times
Relax runs Decrease-key() |E| times
Both take O(lg n) time

So $\mathrm{O}((|\mathrm{V}|+|\mathrm{E}|) \lg |\mathrm{V}|)$ time

 (can get to $\mathrm{O}(|\mathrm{V}| \mathrm{lg}|\mathrm{V}|+\mathrm{E}$) using Fibonacci heaps)
Dijkstra

Runtime note:

If G is almost fully connected, $|\mathrm{E}| \approx|\mathrm{V}|^{2}$

Use a simple array to store v.d Extract-min ()$=\mathrm{O}(|\mathrm{V}|)$ Decrease-key() = O(1) total: $\mathrm{O}\left(|\mathrm{V}|^{2}+\mathrm{E}\right)$

Dijkstra

Correctness: (p.660)

Sufficient to prove when u added to S, u.d $=\delta(\mathrm{s}, \mathrm{u})$

Base: s added to S first, $\mathrm{s} . \mathrm{d}=0=\delta(\mathrm{s}, \mathrm{s})$
Termination: Loop ends after Q is empty, so $\mathrm{V}=\mathrm{S}$ and we done

Dijkstra

Step: Assume v in S has v.d = $\delta(\mathrm{s}, \mathrm{v})$

 Let y be the first vertex outside S on path of $\delta(\mathrm{s}, \mathrm{u})$We know by relaxation property 4 , that $\delta(\mathrm{s}, \mathrm{y})=\mathrm{y} . \mathrm{d}$ (optimal sub-structure)
y.d $=\delta(\mathrm{s}, \mathrm{y}) \leq \delta(\mathrm{s}, \mathrm{u}) \leq \mathrm{u} . \mathrm{d}$, as $\mathrm{w}(\mathrm{p}) \geq 0$

Dijkstra

Step: Assume v in S has v.d = $\delta(\mathrm{s}, \mathrm{v})$

But u was picked before y (pick min), u.d \leq y.d, combined with y.d \leq u.d
y.d=u.d

Thus $\mathrm{y} . \mathrm{d}=\delta(\mathrm{s}, \mathrm{y})=\delta(\mathrm{s}, \mathrm{u})=\mathrm{u} . \mathrm{d}$

