Weighted graphs

Your mother is so fat,

even I cannot find the shortest path around her.
Announcements

Midterm graded

HW 2 posted

Will post first part of programming assignment this weekend
Weighted graph

Edges in weighted graph are assigned a weight: \(w(v_1, v_2) \), where \(v_1, v_2 \) in \(V \)

If path \(p = <v_0, v_1, ... v_k> \) then the weight is: \(w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i) \)

Shortest Path:

\(\delta(u,v): \min \{ w(p) : v_0 = u, v_k = v \} \)
Shortest paths

Today we will look at single-source shortest paths.

This finds the shortest path from some starting vertex, s, to any other vertex on the graph (if it exists).

This creates G_π, the shortest path tree.
Shortest paths

Optimal substructure: Let $\delta(v_0,v_k) = p$, then for all $0 \leq i \leq j \leq k$, $\delta(v_i,v_j) = p_{i,j} = <v_i, v_{i+1}, \ldots, v_j>$

Proof?

Where have we seen this before?
Shortest paths

Optimal substructure: Let $\delta(v_0,v_k) = p$, then for all $0 \leq i \leq j \leq k$, $\delta(v_i,v_j) = p_{i,j} = <v_i, v_{i+1}, \ldots, v_j>

Proof? Contradiction! Suppose $w(p'_{i,j}) < p_{i,j}$, then let

$p'_{0,k} = p'_{0,i} \ p'_{i,j} \ p'_{j,k}$, then $w(p'_{0,k}) < w(p)$
Shortest path

We will do the same thing we have done before with BFS and DFS:

- Makes a queue and put in/pull out

Two major differences:
1. How to remove from queue (min)
2. Update “grey” vertexes (“relax”)
Relaxation

We will only do relaxation on the values v.d (min weight) for vertex v

Relax(u,v,w)
if(v.d > u.d + w(u,v))
 v.d = u.d+w(u,v)
 v.π=u

(i.e. min() function)
Relaxation

We will assume all vertices start with \(v.d = \infty, v.\pi = \text{NIL} \) except \(s, s.d = 0 \)

This will take \(O(|V|) \) time

This will not effect the asymptotic runtime as it will be at least \(O(|V|) \) to find single-source shortest path
Relaxation properties:
1. $\delta(s,v) \leq \delta(s,u) + \delta(u,v)$ (triangle inequality)
2. $v.d \geq \delta(s,v)$, $v.d$ is monotonically decreasing
3. if no path, $v.d = \delta(s,v) = \infty$
4. if $\delta(s,v)$, when $(v.\pi).d = \delta(s,v.\pi)$ then
 relax($v.\pi,v,w$) causes $v.d = \delta(s,v)$
5. if $\delta(v_0,v_k) = p_{0,k}$, then when relaxed in order $(v_0,v_1), (v_1,v_2), \ldots (v_{k-1},v_k)$ then
 $v_k.d = \delta(v_0,v_k)$ even if other relax happen
6. when $v.d = \delta(s,v)$ for all v in V, G_{π} is shortest path tree rooted at s
Directed Acyclic Graphs

DFS can do topological sort (DAG)

Run DFS, sort in decreasing finish time
Directed Acyclic Graphs

DAG-shortest-paths(G,w,s)
topologically sort G
initialize graph from s
for each u in V in topological order
 for each v in G.Adj[u]
 Relax(u,v,w)

Runtime: \(O(|V| + |E|) \)
Directed Acyclic Graphs

Correctness:

Prove it!
Correctness:
By definition of topological order, when relaxing vertex v, we have already relaxed any preceding vertices.

So by relaxation property 5, we have found the shortest path to all v.
BFS (unweighted graphs)

Create FIFO queue to explore unvisited nodes
Dijkstra

Dijkstra's algorithm is the BFS equivalent for non-negative weight graphs
Dijkstra

Dijkstra(G,w,s)
initialize G from s
Q = G.V, S = empty
while Q not empty
 u = Extract-min(Q)
 S = S U {u}
 for each v int G.Adj[u]
 relax(u,v,w)

S optional
(a) Network Model

(b) Distance initialized

(c) Distance to adjacent nodes updated

(d) Node 3 selected

(e) Node 2 selected

(f) Node 5 selected

(g) Node 4 selected

(h) Shortest path found
Dijkstra

Runtime?
Dijkstra

Runtime:
Extract-min() run $|V|$ times
Relax runs Decrease-key() $|E|$ times
Both take $O(lg n)$ time

So $O\left((|V| + |E|) \log |V|\right)$ time
(can get to $O(|V|lg|V| + E)$ using Fibonacci heaps)
Dijkstra

Runtime note:
If G is almost fully connected, $|E| \approx |V|^2$

Use a simple array to store v.d
Extract-min() = $O(|V|)$
Decrease-key() = $O(1)$
Total: $O(|V|^2 + E)$
Dijkstra

Correctness: (p.660)
Sufficient to prove when u added to S, u.d = δ(s,u)

Base: s added to S first, s.d=0=δ(s,s)

Termination: Loop ends after Q is empty, so V=S and we done
Dijkstra

Step: Assume \(v \) in \(S \) has \(v.d = \delta(s,v) \)
Let \(y \) be the first vertex outside \(S \) on path of \(\delta(s,u) \)

We know by relaxation property 4, that \(\delta(s,y)=y.d \) (optimal sub-structure)

\[y.d = \delta(s,y) \leq \delta(s,u) \leq u.d, \text{ as } w(p) \geq 0 \]
Dijkstra

Step: Assume v in S has $v.d = \delta(s,v)$
But u was picked before y (pick min), $u.d \leq y.d$, combined with $y.d \leq u.d$

$y.d = u.d$

Thus $y.d = \delta(s,y) = \delta(s,u) = u.d$