Weighted graphs

Announcements

HW 2 posted

Will post first part of programming assignment this weekend

Skipping Ch. 23 (geometic algs)

Relaxation

We will only do <u>relaxation</u> on the values v.d (min weight) for vertex v

Relax(u,v,w) (i.e. min() function) if(v.d > u.d + w(u,v)) v.d = u.d+w(u,v) v. π =u

Relaxation

Relaxation properties:

- 1. $\delta(s,v) \le \delta(s,u) + \delta(u,v)$ (triangle inequality) 2. v.d $\ge \delta(s,v)$, v.d is monotonically decreasing
- 3. if no path, v.d = $\delta(s,v) = \infty$
- 4. if $\delta(s,v)$, when $(v.\pi).d=\delta(s,v.\pi)$ then relax $(v.\pi,v,w)$ causes $v.d=\delta(s,v)$
- 5. if $\delta(v_0, v_k) = p_{0,k}$, then when relaxed in order (v_0, v_1) , (v_1, v_2) , ... (v_{k-1}, v_k) then $v_k d = \delta(v_0, v_k)$ even if other relax happen
- 6. when v.d= $\delta(s,v)$ for all v in V, G_{π} is shortest path tree rooted at s

Dijkstra's algorithm is the BFS equivalent for non-negative weight graphs

Dijkstra(G,w,s) initialize G from s Q = G.V, S = emptywhile Q not empty u = Extract-min(Q) S optional $S = S U \{u\}$ for each v in G.Adj[u] relax(u,v,w)

Runtime?

Runtime: Extract-min() run |V| times Relax runs Decrease-key() |E| times Both take O(lg n) time

So O((|V| + |E|) lg |V|) time (can get to O(|V|lg|V| + E) using Fibonacci heaps)

Runtime note: If G is almost fully connected, $|\mathbf{E}| \approx |\mathbf{V}|^2$

Use a simple array to store v.d Extract-min() = O(|V|) Decrease-key() = O(1) total: O(|V|² + E)

Correctness: (p.660) Sufficient to prove when u added to S, u.d = $\delta(s,u)$

Base: s added to S first, s.d=0= δ (s,s)

Termination: Loop ends after Q is empty, so V=S and we done

Step: Assume v in S has v.d = $\delta(s,v)$ Let y be the first vertex outside S on path of $\delta(s,u)$

We know by relaxation property 4, that $\delta(s,y)=y.d$ (optimal sub-structure)

 $y.d = \delta(s,y) \le \delta(s,u) \le u.d$, as $w(p) \ge 0$

Step: Assume v in S has v.d = $\delta(s,v)$ But u was picked before y (pick min), u.d \leq y.d, combined with y.d \leq u.d

y.d=u.d

Thus y.d = $\delta(s,y) = \delta(s,u) = u.d$