Weighted graphs

...WAIT. WHAT THE HECK IS GONG ON WITH TTE HMDROLOGY AROUND HERE?

Announcements

HW 2 posted

Will post first part of programming assignment this weekend

Skipping Ch. 23 (geometic algs)

Relaxation

We will only do relaxation on the values v.d (min weight) for vertex v
$\operatorname{Relax}(u, v, w) ~-~(i . e . \min ()$ function)
if(v.d > u.d + w(u,v))
v.d = u.d+w(u,v)
V.T=u

Relaxation

Relaxation properties:

1. $\delta(\mathrm{s}, \mathrm{v}) \leq \delta(\mathrm{s}, \mathrm{u})+\delta(\mathrm{u}, \mathrm{v})$ (triangle inequality)
2. v.d $\geq \delta(\mathrm{s}, \mathrm{v})$, v.d is monotonically decreasing
3. if no path, v.d $=\delta(\mathrm{s}, \mathrm{v})=\infty$
4. if $\delta(\mathrm{s}, \mathrm{v})$, when $(\mathrm{v} . \pi) . \mathrm{d}=\delta(\mathrm{s}, \mathrm{v} . \pi)$ then
relax(v. $\pi, \mathrm{v}, \mathrm{w})$ causes $\mathrm{v} . \mathrm{d}=\delta(\mathrm{s}, \mathrm{v})$
5. if $\delta\left(\mathrm{v}_{0}, \mathrm{v}_{\mathrm{k}}\right)=\mathrm{p}_{0, \mathrm{k}}$, then when relaxed in order $\left(\mathrm{v}_{0}, \mathrm{v}_{1}\right),\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right), \ldots\left(\mathrm{v}_{\mathrm{k}-1}, \mathrm{v}_{\mathrm{k}}\right)$ then $v_{k} \cdot d=\delta\left(v_{0}, v_{k}\right)$ even if other relax happen
6. when $v . d=\delta(s, v)$ for all v in V, G_{π} is shortest path tree rooted at s

Dijkstra

Dijkstra's algorithm is the BFS equivalent for non-negative weight graphs

Dijkstra

Dijkstra(G,w,s)
initialize G from s
$\mathrm{Q}=\mathrm{G} . \mathrm{V}, \mathrm{S}=\mathrm{empty}$
while Q not empty
u = Extract-min(Q)
S = S U \{u\}
for each v in G.Adj[u] relax (u,v,w)

Dijkstra
Runtime?

Dijkstra

Runtime:

Extract-min() run |V| times
Relax runs Decrease-key() |E| times Both take O(lg n) time

So $\mathrm{O}((|\mathrm{V}|+|\mathrm{E}|) \lg |\mathrm{V}|)$ time

 (can get to $\mathrm{O}(|\mathrm{V}| \mathrm{lg}|\mathrm{V}|+\mathrm{E}$) using Fibonacci heaps)
Dijkstra

Runtime note:

If G is almost fully connected, $|\mathrm{E}| \approx|\mathrm{V}|^{2}$

Use a simple array to store v.d Extract-min ()$=\mathrm{O}(|\mathrm{V}|)$
Decrease-key() = O(1) total: $\mathrm{O}\left(|\mathrm{V}|^{2}+\mathrm{E}\right)$

Dijkstra

Correctness: (p.660)
Sufficient to prove when u added to S, u.d $=\delta(\mathrm{s}, \mathrm{u})$

Base: s added to S first, $\mathrm{s} . \mathrm{d}=0=\delta(\mathrm{s}, \mathrm{s})$
Termination: Loop ends after Q is empty, so V=S and we done

Dijkstra

Step: Assume v in S has v.d = $\delta(\mathrm{s}, \mathrm{v})$ Let y be the first vertex outside S on path of $\delta(\mathrm{s}, \mathrm{u})$

We know by relaxation property 4 , that $\delta(\mathrm{s}, \mathrm{y})=\mathrm{y} . \mathrm{d}$ (optimal sub-structure)
y.d $=\delta(\mathrm{s}, \mathrm{y}) \leq \delta(\mathrm{s}, \mathrm{u}) \leq \mathrm{u} . \mathrm{d}$, as $\mathrm{w}(\mathrm{p}) \geq 0$

Dijkstra

Step: Assume v in S has v.d = $\delta(\mathrm{s}, \mathrm{v})$

But u was picked before y (pick min), u.d \leq y.d, combined with y.d \leq u.d
y.d=u.d

Thus $\mathrm{y} . \mathrm{d}=\delta(\mathrm{s}, \mathrm{y})=\delta(\mathrm{s}, \mathrm{u})=\mathrm{u} . \mathrm{d}$

