Weighted graphs
Announcements

HW 2 posted

Will post first part of programming assignment this weekend

Skipping Ch. 23 (geometric algs)
Relaxation

We will only do relaxation on the values v.d (min weight) for vertex v

```
Relax(u,v,w)  (i.e. min() function)
if(v.d > u.d + w(u,v))
  v.d = u.d + w(u,v)
  v.π = u
```
Relaxation

Relaxation properties:
1. $\delta(s,v) \leq \delta(s,u) + \delta(u,v)$ (triangle inequality)
2. $v.d \geq \delta(s,v)$, $v.d$ is monotonically decreasing
3. if no path, $v.d = \delta(s,v) = \infty$
4. if $\delta(s,v)$, when $(v.\pi).d=\delta(s,v.\pi)$ then relax($v.\pi,v,w$) causes $v.d=\delta(s,v)$
5. if $\delta(v_0,v_k) = p_{0,k}$, then when relaxed in order $(v_0, v_1), (v_1, v_2), \ldots (v_{k-1},v_k)$ then $v_k.d=\delta(v_0,v_k)$ even if other relax happen
6. when $v.d=\delta(s,v)$ for all v in V, G_π is shortest path tree rooted at s
Dijkstra's algorithm is the BFS equivalent for non-negative weight graphs
Dijkstra

Dijkstra(G, w, s)
initialize G from s
Q = G.V, S = empty
while Q not empty
 u = Extract-min(Q)
 S = S U {u}
 for each v in G.Adj[u]
 relax(u, v, w)
(a) Network Model

(b) Distance initialized

(c) Distance to adjacent nodes updated

(d) Node 3 selected

(e) Node 2 selected

(f) Node 5 selected

(g) Node 4 selected

(h) Shortest path found
Dijkstra

Runtime?
Runtime:
Extract-min() run \(|V|\) times
Relax runs Decrease-key() \(|E|\) times
Both take \(O(lg n)\) time

So \(O((|V| + |E|) lg |V|)\) time
(can get to \(O(|V|lg|V| + E)\) using Fibonacci heaps)
Dijkstra

Runtime note:
If G is almost fully connected, $|E| \approx |V|^2$

Use a simple array to store $v.d$

$\text{Extract-min()} = O(|V|)$
$\text{Decrease-key()} = O(1)$

total: $O(|V|^2 + E)$
Correctness: (p.660)
Sufficient to prove when \(u \) added to \(S \), \(u.d = \delta(s,u) \)

Base: \(s \) added to \(S \) first, \(s.d=0=\delta(s,s) \)

Termination: Loop ends after \(Q \) is empty, so \(V=S \) and we done
Dijkstra

Step: Assume \(v \) in \(S \) has \(v.d = \delta(s,v) \)
Let \(y \) be the first vertex outside \(S \) on path of \(\delta(s,u) \)

We know by relaxation property 4, that \(\delta(s,y) = y.d \) (optimal sub-structure)

\(y.d = \delta(s,y) \leq \delta(s,u) \leq u.d \), as \(w(p) \geq 0 \)
Dijkstra

Step: Assume \(v \) in \(S \) has \(v.d = \delta(s,v) \)
But \(u \) was picked before \(y \) (pick min), \(u.d \leq y.d \), combined with \(y.d \leq u.d \)

\[y.d = u.d \]

Thus \(y.d = \delta(s,y) = \delta(s,u) = u.d \)