
  

Weighted graphs
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Weighted graphs

So far we have only considered
weighted graphs with “weights > 0”
(Dijkstra is a super-star here)

Now we will consider graphs with
any integer edge weight (i.e. negative
too) 
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Cycles

Does a shortest path need to contain 
a cycle?
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Cycles

Does a shortest path need to contain 
a cycle?

No, case by cycle weight:
positive: why take the cycle?!
zero: can delete cycle and find same

length path
negative: cannot ever leave cycle 
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Bellman-Ford

One of the few “brute force” 
algorithms that got a name

Idea:
1. Relax every edge (yes, all)
2. Repeat step 1 |V| times (or |V|-1)
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Bellman-Ford

BF(G, w, s)
initialize graph
for i=1 to |V| - 1

for each edge (u,v) in G.E
relax(u,v,w)

for each edge (u,v) in G.E
if v.d > u.d+w(u,v): return false

return true
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Bellman-Ford
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Bellman-Ford

Correctness: (you prove)

After BF finishes: if δ(s,u) exists,
 then δ(s,u) = u.d
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Bellman-Ford

Correctness: (you prove)

After BF finishes: if δ(s,u) exists,
 then δ(s,u) = u.d

Relxation property 5, as every edge
is relaxed |V|-1 times and there are no
loops
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Bellman-Ford

Correctness: returns false if neg cycle
Suppose neg cycle: c = <v

0
, v

1
, ... v

k
>

then w(c) < 0, suppose BF return true
Then v

i
.d < v

i-1
.d + w(v

i-1
, v

i
)

sum around cycle c:
∑k

i=1
 v

i
.d < ∑k

i=1
 (v

i-1
.d +w(v

i-1
,v

i
))

∑k
i=1

 v
i
.d < ∑k

i=1
 v

i-1
.d as loop
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Bellman-Ford

Correctness: returns false if neg cycle
∑k

i=1
 v

i
.d < ∑k

i=1
 (v

i-1
.d +w(v

i-1
,v

i
))

∑k
i=1

 v
i
.d = ∑k

i=1
 v

i-1
.d as loop

so 0 < ∑k
i=1

 w(v
i-1

,v
i
) 

but ∑k
i=1

 w(v
i-1

,v
i
) = w(c) < 0

Contradiction!
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All-pairs shortest path

So far we have looked at:
Shortest path from a specific start
to any other vertex

Next we will look at:
Shortest path from any starting vertex
to any other vertex
(called “All-pairs shortest path”)
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Johnson's algorithm

We will start by doing something
a little funny

(This will be the most efficient for 
graphs without too many edges)

To compute all-pairs shortest path
on G, we will modify G to make G'
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Johnson's algorithm

To make G', we simply add one
“super vertex” that connects to all
the original nodes with weight 0 edge

super vertex

G G'
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Johnson's algorithm

Next, we use Bellman-Ford (last alg.)
to find the shortest path from the
“super vertex” in G' to all others
(shortest path distance, i.e. d-value)

0

-2

-3

0
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Johnson's algorithm

Then we will “reweight” the graph:

0

-2

-3

new weight
(u,v) is a vertex pair (an edge from u to v)

old weight d-value in vertex

0

0

7

2

0

3

0

17



  

Johnson's algorithm

Next, we just run Dijkstra's starting
at each vertex in G (starting at A, 
at B, and at C for this graph)
Call these 
start A
start B
start C 0

-2

-3

0

0

7

2

0

3

0
0
∞
∞

0
0
0

0
∞
0

18



  

Johnson's algorithm

Finally, we “un-weight” the edges:

start A
start B
start C

0

-2

-3

0

0

7

2

0

3

0
0
∞
∞

-2
1
0

-3
∞
0

last time +
last time -

19



  

Johnson's algorithm

Johnson(G)
Make G' 
Use Bellman-Ford on G' to get h
(and ensure no negative cycle)
Reweight all edges (using h)
for each vertex v in G

Run Dijkstra's starting at v
Un-weight all Dijkstra paths
return all un-weighted Dijkstra paths(matrix)
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Johnson's algorithm

Runtime?
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Johnson's algorithm

Runtime:
Bellman-Ford = O(|V| |E|)
Dijkstra = O(|V| lg |V| + E)
Making G' takes O(|V|) to add edges
Bellman-Ford run once
weight edges = O(|E|)
unweighting paths = O(|V|2)
Dijkstra run |V| times most costly
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Johnson's algorithm

Runtime:
Bellman-Ford = O(|V| |E|)
Dijkstra = O(|V| lg |V| + E)

O(|V|) + O(|V| |E|) + O(|E|) + O(|V|2)
+ |V| O(|V| lg |V| + E)

= O( |V|2 lg |V| + |V| |E| )
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Correctness

The proof is easy, as we can rely on
Dijkstra's correctness

We need to simply show:
(1) Re-weighting in this fashion 

does not change shortest path
(2) Re-weighting makes only positive

edges (for Dijkstra to work)
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Correctness

(1) Re-weighting keeps shortest paths
Here we can use the optimal
sub-structure of paths:

If
then
But as (v

i
, v

i+1
) is the edge taken: 
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Correctness

(1) Re-weighting keeps shortest paths
Then by definition of 
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Correctness

(1) Re-weighting keeps shortest paths
Thus, the shortest path is just offset
by “h(v

0
) - h(v

k
)” (also any path)

As v
0
 is the start vertex and v

k
 is the 

end, so vertices along the path have
no influence on           (same path)  
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Correctness

(2) Re-weighting makes edges > 0

One of our “relaxation properties”
is the “triangle inequality”

how h defined
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All-Pairs Shortest Paths
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TL;DR dynamic programming

What are two ways you can compute
the Fibonacci numbers?

F
n
 = F

n-1
 + F

n-2

with F
0
=0, F

1
=1

Which way is better?
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TL;DR dynamic programming

One way, simply use the definition

Recursive:
F(n):

if(n==1 or n==0)
return n

else return F(n-1)+F(n-2)
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TL;DR dynamic programming

Another way, compute F(2), then F(3)
... until you get to F(n)

Bottom up:
A[0] = 0
A[1] = 1
for i = 2 to n

A[i] = A[i-1] + A[i-2]
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TL;DR dynamic programming

This second way is much faster

It turns out you can take pretty much
any recursion and solve it this way
(called “dynamic programming”)

It can use a bit more memory,
but much faster
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TL;DR dynamic programming

How many multiplication operations 
does it take to compute:

x4?

x10?
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TL;DR dynamic programming

How many multiplication operations 
does it take to compute:

x4? Answer: 2

x10? Answer: 4
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TL;DR dynamic programming

Can compute x4 with 2 operations:
x2 = x * x  (store this value)
x4 = x2 * x2

Save CPU by using more memory!

Can compute xn using O(lg n) ops
Also true if x is a matrix
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Shortest paths using matrices

Any sub-path (p
x,y

) of a shortest 
path (p

u,v
) is also a shortest path

Thus we can recursively define a
shortest path p

0,k
 = <v

0
, ..., v

k
>, as:

w(p
0,k

)=min
“k-1”

(w(p
0,“k-1”

)+w(“k-1”,k))
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Shortest paths using matrices

Thus a shortest path (using less than
m edges) can be defined as:

Lm = lm
i,j
 = min

k
(lm-1

i,k
 + l1

k,j
),

where L1 is the edge weights matrix

Can use dynamic programming to 
find an efficient solution
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Shortest paths using matrices

Lm is not the mth power of L, but
the operations are very similar:

Lm = lm
i,j
 = min

k
(lm-1

i,k
 + l1

k,j
) // ours

Lm = lm
i,j
 = ∑

k
( lm-1

i,k
*l1

k,j
) //real times

Thus we can use our multiplication
saving technique here too!
(see: MatrixAPSPmult.java)

39



  

Shortest paths using matrices

All-pairs-shortest-paths(W)
L(1) = W, n = W.rows, m  = 1
while m < n

L(2m) = ESP(L(m), L(m))
m = 2m

return L(m)

(ESP is L min op on previous slide)
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Shortest paths using matrices

Runtime:
|V|3 lg |V|

Correctness:
By definition (brute force with some
computation savers)
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Floyd-Warshall

The Floyd-Warshall is similar but
uses another shortest path property

Suppose we have a graph G, if we 
add a single vertex k to get G'

We now need to recompute all
shortest paths
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Floyd-Warshall

Either the path goes through k,
or remains unchanged

dk
i,j
 = min (dk-1

i,j
, dk-1

i,k
 + dk-1

k,j
)
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Floyd-Warshall

Floyd-Warshall(W) // dynamic prog
d0

i,j
 = W

i,j
, n = W.rows

for k = 1 to n
for i = 1 to n

for j = 1 to n
dk

i,j
 = min (dk-1

i,j
, dk-1

i,k
 + dk-1

k,j
)
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Floyd-Warshall

Runtime:
O(|V|3)

Correctness:
Again, by definition of shortest path
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