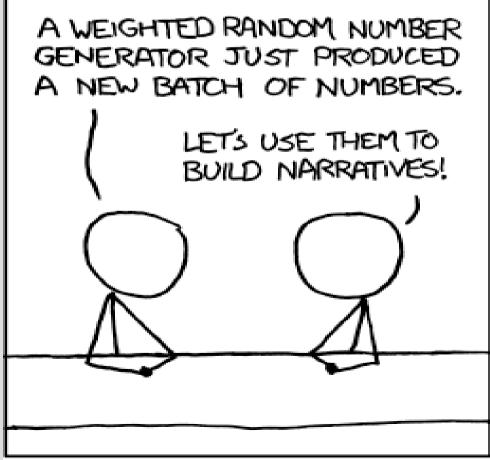
Weighted graphs

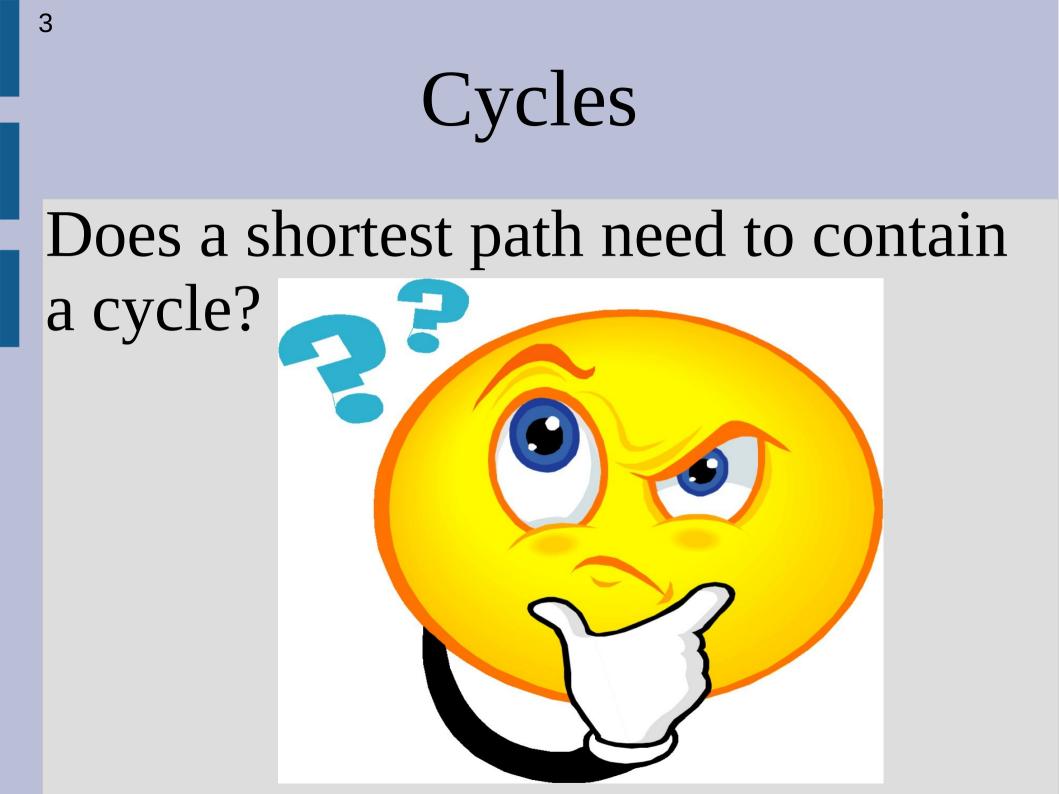


ALL SPORTS COMMENTARY

Weighted graphs

So far we have only considered weighted graphs with "weights ≥ 0 " (Dijkstra is a super-star here)

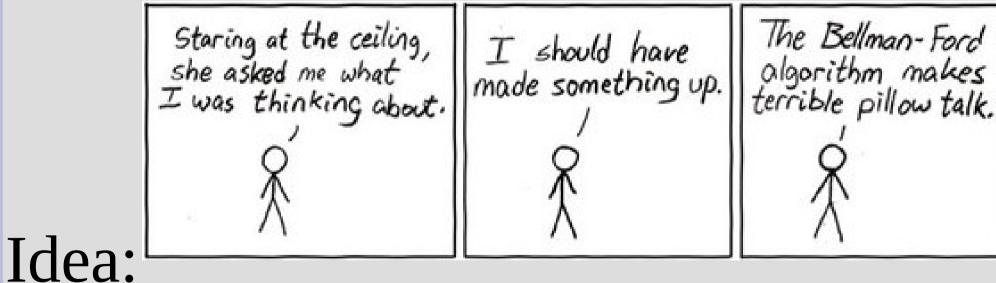
Now we will consider graphs with any integer edge weight (i.e. negative too)



Does a shortest path need to contain a cycle?

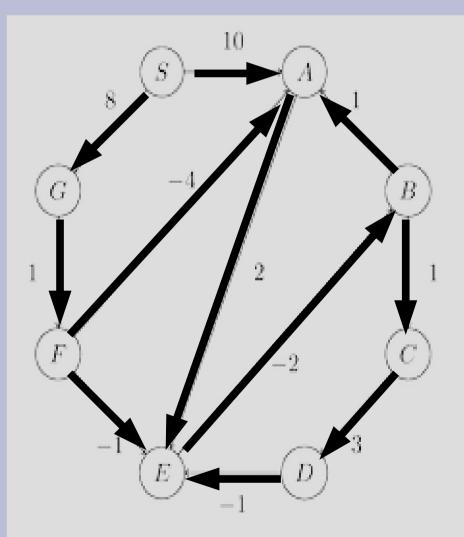
No, case by cycle weight: positive: why take the cycle?! zero: can delete cycle and find same length path negative: cannot ever leave cycle

One of the few "brute force" algorithms that got a name



Relax every edge (yes, <u>all</u>)
 Repeat step 1 |V| times (or |V|-1)

BF(G, w, s)initialize graph for i=1 to |V| - 1 for each edge (u,v) in G.E relax(u,v,w) for each edge (u,v) in G.E if v.d > u.d+w(u,v): return false return true



	Iteration							
Node	- 0	1	2	- 3	-4	-5	-6	7
S	0	0	0	-0	0	- 0	0	0
A	∞	10	10	-5	- 5	-5	-5-	5
B	∞	∞	∞	10	- 6	-5	-5	5
C	∞	∞	∞	∞	11	7	-6	6
D	∞	∞	∞	∞	∞	14	10	9
E	∞	∞	12	8	7	7	7	7
F	∞	∞	9	-9	- 9	-9	-9	9
G	∞	8	8	8	8	8	8	8

Correctness: (you prove)

After BF finishes: if $\delta(s,u)$ exists, then $\delta(s,u) = u.d$

Correctness: (you prove)

After BF finishes: if $\delta(s,u)$ exists, then $\delta(s,u) = u.d$

Relxation property 5, as every edge is relaxed |V|-1 times and there are no loops

Correctness: returns false if neg cycle Suppose neg cycle: $c = \langle v_0, v_1, \dots, v_k \rangle$ then w(c) < 0, suppose BF return true Then $v_i d \le v_{i-1} + w(v_{i-1}, v_i)$ sum around cycle c: $\sum_{i=1}^{k} v_{i}.d \leq \sum_{i=1}^{k} (v_{i-1}.d + w(v_{i-1},v_{i}))$ $\sum_{i=1}^{k} v_{i} d \leq \sum_{i=1}^{k} v_{i-1} d as loop$

Correctness: returns false if neg cycle $\sum_{i=1}^{k} v_{i} d \leq \sum_{i=1}^{k} (v_{i-1} d + w(v_{i-1}, v_{i}))$ $\sum_{i=1}^{k} v_{i} d = \sum_{i=1}^{k} v_{i-1} d as loop$ so $0 \le \sum_{i=1}^{k} W(V_{i-1}, V_{i})$ but $\sum_{i=1}^{k} w(v_{i-1}, v_i) = w(c) < 0$

Contradiction!

All-pairs shortest path

So far we have looked at: Shortest path from <u>a specific start</u> to any other vertex

Next we will look at: Shortest path from <u>any starting vertex</u> to any other vertex (called "All-pairs shortest path")

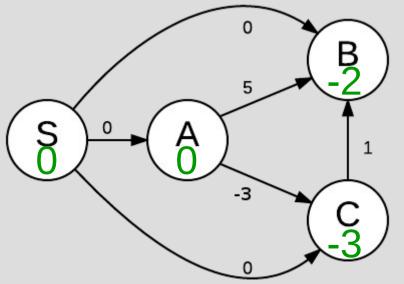
We will start by doing something a little funny

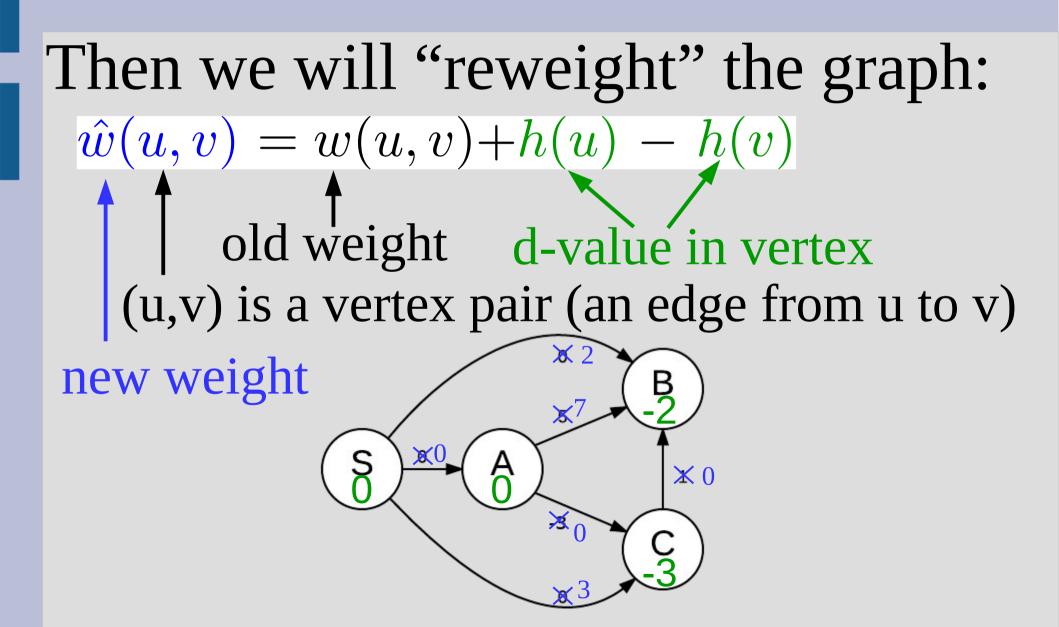
(This will be the most efficient for graphs without too many edges)

To compute all-pairs shortest path on G, we will modify G to make G'

To make G', we simply add one "super vertex" that connects to all the original nodes with weight 0 edge super vertex В в 2006

Next, we use Bellman-Ford (last alg.) to find the shortest path from the "super vertex" in G' to all others (shortest path distance, i.e. d-value)





Next, we just run Dijkstra's starting at each vertex in G (starting at A, at B, and at C for this graph) Call these $\hat{\delta}(u, v)$ (A, B)start A \mathbf{X} 2 start **B x**0 **X** 0 start C ×0

Finally, we "un-weight" the edges: $\delta(u, v) = \hat{\delta}(u, v) - h(u) + h(v)$ **start A** last time start B last time + start C **X** 2 B $\mathbf{X}0$ A ₩0

×0

Johnson(G) Make G' Use Bellman-Ford on G' to get h (and ensure no negative cycle) Reweight all edges (using h) for each vertex v in G Run Dijkstra's starting at v Un-weight all Dijkstra paths

return all un-weighted Dijkstra paths(matrix)

Runtime?

Runtime: Bellman-Ford = O(|V| |E|)Dijkstra = O(|V| lg |V| + E)Making G' takes O(|V|) to add edges Bellman-Ford run once weight edges = O(|E|)unweighting paths = $O(|V|^2)$ Dijkstra run |V| times — most costly

Runtime: Bellman-Ford = O(|V| |E|)Dijkstra = O(|V| lg |V| + E)

 $O(|V|) + O(|V| |E|) + O(|E|) + O(|V|^2)$ + |V| O(|V| lg |V| + E)

 $= O(|V|^2 lg |V| + |V| |E|)$

The proof is easy, as we can rely on Dijkstra's correctness

We need to simply show:
(1) Re-weighting in this fashion does not change shortest path
(2) Re-weighting makes only positive edges (for Dijkstra to work)

(1) Re-weighting keeps shortest paths Here we can use the optimal sub-structure of paths:

If $\delta(u, x) = \langle v_0, v_1, ..., v_k \rangle$ with $v_0 = u$ and $v_k = x$ then $\delta(u, x) = \delta(v_0, v_1) + \delta(v_1, v_2) + ... + \delta(v_{k-1}, v_k)$ But as $(\mathbf{v}_i, \mathbf{v}_{i+1})$ is the edge taken: $\delta(v_i, v_{i+1}) = w(v_i, v_{i+1})$

(1) Re-weighting keeps shortest paths Then by definition of $\hat{\delta}(u, x)$

$$(u, x) = \hat{w}(path)$$

= $\sum_{i=1}^{k} \hat{w}(v_{i-1}, v_i)$
= $\sum_{i=1}^{k} w(v_{i-1}, v_i) + h(v_{i-1} - h(v_i))$
= $h(v_0) - h(v_k) + \sum_{i=1}^{k} w(v_{i-1}, v_i)$
= $h(v_0) - h(v_k) + \delta(u, x)$

 $\hat{\delta}$

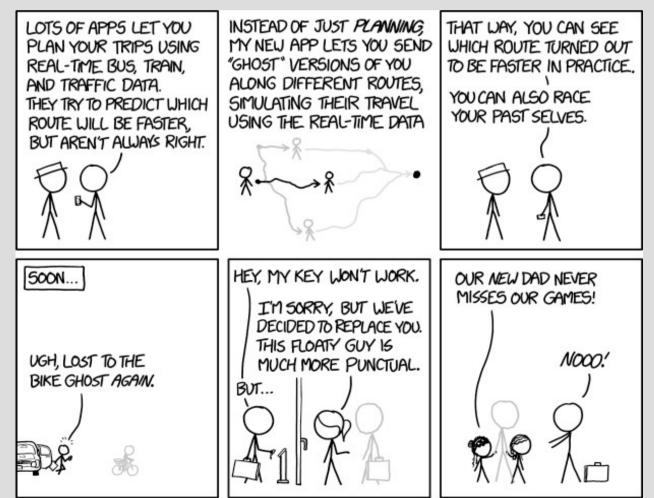
(1) Re-weighting keeps shortest paths Thus, the shortest path is just offset by " $h(v_0) - h(v_k)$ " (also any path)

As v_0 is the start vertex and v_k is the end, so vertices along the path have no influence on $\hat{\delta}(u, x)$ (same path)

(2) Re-weighting makes edges > 0

One of our "relaxation properties" is the "triangle inequality" $\delta(s, v) \le \delta(s, u) + w(u, v)$ $= 0 \le \delta(s, u) + w(u, v) - \delta(s, v)$ how h defined $0 \le w(u, v) + h(u) - h(v) = \hat{w}(u, v)$

All-Pairs Shortest Paths



What are two ways you can compute the Fibonacci numbers?

 $F_n = F_{n-1} + F_{n-2}$ with $F_0 = 0$, $F_1 = 1$

Which way is better?

One way, simply use the definition

Recursive: F(n): if(n==1 or n==0) return n else return F(n-1)+F(n-2)

Another way, compute F(2), then F(3) ... until you get to F(n)

Bottom up: A[0] = 0 A[1] = 1for i = 2 to n A[i] = A[i-1] + A[i-2]

This second way is *much* faster

It turns out you can take pretty much any recursion and solve it this way (called "dynamic programming")

It can use a bit more memory, but much faster

How many multiplication operations does it take to compute:

$$x^4$$
?

 X^{10} ?

How many multiplication operations does it take to compute:

x⁴? Answer: 2

x¹⁰? Answer: 4

Can compute x^4 with 2 operations: $x^2 = x * x$ (store this value) $x^4 = x^2 * x^2$

Save CPU by using more memory!

Can compute xⁿ using O(lg n) ops Also true if x is a matrix

Any sub-path $(p_{x,y})$ of a shortest path $(p_{u,v})$ is also a shortest path

Thus we can recursively define a shortest path $p_{0,k} = \langle v_0, ..., v_k \rangle$, as: $w(p_{0,k}) = min_{(k-1)}(w(p_{0,(k-1)}) + w((k-1)))$

Thus a shortest path (using less than medges) can be defined as:

 $L^{m} = l^{m}_{i,j} = min_{k}(l^{m-1}_{i,k} + l^{1}_{k,j}),$ where L^{1} is the edge weights matrix

Can use dynamic programming to find an efficient solution

L^m is not the mth power of L, but the operations are very similar: $L^{m} = l^{m}_{i,i} = min_{k}(l^{m-1}_{i,k} + l^{1}_{k,i}) // ours$ $L^{m} = l^{m}_{i,i} = \sum_{k} (l^{m-1}_{i,k} * l^{1}_{k,i}) //real times$ Thus we can use our multiplication saving technique here too! (see: MatrixAPSPmult.java)

All-pairs-shortest-paths(W) L(1) = W, n = W.rows, m = 1while m < nL(2m) = ESP(L(m), L(m))m = 2mreturn L(m)

(ESP is L min op on previous slide)

Runtime: |V|³ lg |V|

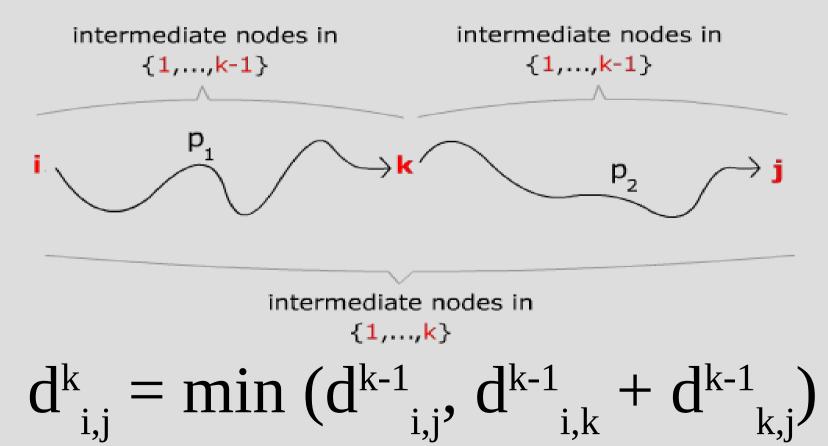
Correctness: By definition (brute force with some computation savers)

The Floyd-Warshall is similar but uses another shortest path property

Suppose we have a graph G, if we add a single vertex k to get G'

We now need to recompute all shortest paths

Either the path goes through k, or remains unchanged



```
Floyd-Warshall(W) // dynamic prog
d_{i,i}^{0} = W_{i,i}, n = W.rows
for k = 1 to n
  for i = 1 to n
     for j = 1 to n
       d^{k}_{i,i} = \min(d^{k-1}_{i,i}, d^{k-1}_{i,k} + d^{k-1}_{k,i})
```

Runtime: $O(|V|^3)$

Correctness: Again, by definition of shortest path