Weighted graphs

ALL SPORTS COMMENTARY

Weighted graphs

So far we have only considered
weighted graphs with "weights ≥ 0 " (Dijkstra is a super-star here)

Now we will consider graphs with any integer edge weight (i.e. negative too)

Cycles

Does a shortest path need to contain a cycle?

Cycles

Does a shortest path need to contain a cycle?

No, case by cycle weight: positive: why take the cycle?! zero: can delete cycle and find same length path
negative: cannot ever leave cycle

Bellman-Ford

One of the few "brute force" algorithms that got a name

Staring at the ceiling,
she asked me what
I was thinking about.

I should have
I should have
The Bellman-Ford algorithm makes terrible pillow talk.

Idea:

1. Relax every edge (yes, all)
2. Repeat step $1|\mathrm{~V}|$ times (or $|\mathrm{V}|-1$)

Bellman-Ford

BF(G, w, s)
initialize graph
for $\mathrm{i}=1$ to $|\mathrm{V}|-1$
for each edge (u,v) in G.E relax(u,v,w)
for each edge (u,v) in G.E if v.d > u.d+w(u,v): return false return true

Bellman-Ford

	Iteration								
Node	0	1	2	3	1	5	6	7	
S	0	0	0	0	0	0	0	0	
A	∞	10	10	5	5	5	5	5	
B	∞	∞	∞	10	6	5	5	5	
C	∞	∞	∞	∞	11	7	6	6	
D	∞	∞	∞	∞	∞	14	10	9	
E	∞	∞	12	8	7	7	7	7	
F	∞	∞	9	9	9	9	9	9	
G	∞	8	8	8	8	8	8	8	

Bellman-Ford

Correctness: (you prove)

After BF finishes: if $\delta(\mathrm{s}, \mathrm{u})$ exists, then $\delta(\mathrm{s}, \mathrm{u})=\mathrm{u} . \mathrm{d}$

Bellman-Ford

Correctness: (you prove)

After BF finishes: if $\delta(\mathrm{s}, \mathrm{u})$ exists, then $\delta(\mathrm{s}, \mathrm{u})=\mathrm{u} . \mathrm{d}$

Relation property 5 , as every edge is relaxed $|\mathrm{V}|-1$ times and there are no loops

Bellman-Ford

Correctness: returns false if neg cycle Suppose neg cycle: $\mathrm{c}=\left\langle\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots \mathrm{v}_{\mathrm{k}}\right\rangle$ then $\mathrm{w}(\mathrm{c})<0$, suppose BF return true Then $v_{i} \cdot d \leq v_{i-1} \cdot d+w\left(v_{i-1}, v_{i}\right)$ sum around cycle c:
$\sum_{i=1}^{\mathrm{k}} \mathrm{v}_{\mathrm{i}} \cdot \mathrm{d} \leq \sum_{\mathrm{i}=1}^{\mathrm{k}}\left(\mathrm{v}_{\mathrm{i}-1} \cdot \mathrm{~d}+\mathrm{w}\left(\mathrm{v}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{i}}\right)\right)$
$\sum_{i=1}^{k} \mathrm{v}_{\mathrm{i}} \cdot \mathrm{d} \leq \sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{v}_{\mathrm{i}-1} \cdot \mathrm{~d}$ as loop

Bellman-Ford

Correctness: returns false if neg cycle $\sum_{i=1}^{k} v_{i} \cdot \mathrm{~d} \leq \sum_{i=1}^{k}\left(v_{i-1} \cdot d+w\left(v_{i-1}, v_{i}\right)\right)$
$\sum_{i=1}^{k} v_{i} \cdot \mathrm{~d}^{\mathrm{d}}=\sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{v}_{\mathrm{i}-1} \cdot \mathrm{~d}$ as loop
so $0 \leq \sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{w}\left(\mathrm{v}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{i}}\right)$
but $\sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{w}\left(\mathrm{v}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{i}}\right)=\mathrm{w}(\mathrm{c})<0$

Contradiction!

All-pairs shortest path

So far we have looked at:

Shortest path from a specific start to any other vertex

Next we will look at: Shortest path from any starting vertex to any other vertex (called "All-pairs shortest path")

Johnson's algorithm

We will start by doing something a little funny
(This will be the most efficient for graphs without too many edges)

To compute all-pairs shortest path on G, we will modify G to make G^{\prime}

Johnson's algorithm

To make G', we simply add one "super vertex" that connects to all the original nodes with weight 0 edge

Johnson's algorithm

Next, we use Bellman-Ford (last alg.) to find the shortest path from the "super vertex" in G' to all others (shortest path distance, i.e. d-value)

Johnson's algorithm

Then we will "reweight" the graph: $\hat{w}(u, v)=w(u, v)+h(u)-h(v)$ $\uparrow \uparrow$
old weight d-value in vertex
(u, v) is a vertex pair (an edge from u to v) new weight

Johnson's algorithm

Next, we just run Dijkstra's starting at each vertex in G (starting at A, at B, and at C for this graph) Call these $\hat{\delta}(u, v)$ start A start B start C

Johnson's algorithm

Finally, we "un-weight" the edges: $\delta(u, v)=\hat{\delta}(u, v)-h(u)+h(v)$ start A
start B
last time +
start C

Johnson's algorithm

Johnson(G)
Make G'
Use Bellman-Ford on G^{\prime} to get h
(and ensure no negative cycle)
Reweight all edges (using h)
for each vertex v in G
Run Dijkstra's starting at v
Un-weight all Dijkstra paths
return all un-weighted Dijkstra paths(matrix)

Johnson's algorithm

Runtime?

Johnson's algorithm

Runtime:

Bellman-Ford $=\mathrm{O}(|\mathrm{V}||\mathrm{E}|)$ Dijkstra $=\mathrm{O}(|\mathrm{V}| \lg |\mathrm{V}|+\mathrm{E})$
Making G^{\prime} takes $\mathrm{O}(|\mathrm{V}|)$ to add edges Bellman-Ford run once weight edges $=\mathrm{O}(|\mathrm{E}|)$
unweighting paths $=\mathrm{O}\left(|\mathrm{V}|^{2}\right)$
Dijkstra run $|\mathrm{V}|$ times \longleftarrow most costly

Johnson's algorithm

Runtime:

Bellman-Ford $=\mathrm{O}(|\mathrm{V}||\mathrm{E}|)$
Dijkstra $=\mathrm{O}(|\mathrm{V}| \lg |\mathrm{V}|+\mathrm{E})$
$\mathrm{O}(|\mathrm{V}|)+\mathrm{O}(|\mathrm{V}||\mathrm{E}|)+\mathrm{O}(|\mathrm{E}|)+\mathrm{O}\left(|\mathrm{V}|^{2}\right)$
$+|\mathrm{V}| \mathrm{O}(|\mathrm{V}| \lg |\mathrm{V}|+\mathrm{E})$
$=\mathrm{O}\left(|\mathrm{V}|^{2} \lg |\mathrm{~V}|+|\mathrm{V}||\mathrm{E}|\right)$

Correctness

The proof is easy, as we can rely on Dijkstra's correctness

We need to simply show:
(1) Re-weighting in this fashion does not change shortest path
(2) Re-weighting makes only positive edges (for Dijkstra to work)

Correctness

(1) Re-weighting keeps shortest paths Here we can use the optimal sub-structure of paths:

If $\delta(u, x)=<v_{0}, v_{1}, \ldots v_{k}>$ with $v_{0}=u$ and $v_{k}=x$ then $\delta(u, x)=\delta\left(v_{0}, v_{1}\right)+\delta\left(v_{1}, v_{2}\right)+\ldots+\delta\left(v_{k-1}, v_{k}\right)$ But as $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right)$ is the edge taken: $\delta\left(v_{i}, v_{i+1}\right)=w\left(v_{i}, v_{i+1}\right)$

Correctness

(1) Re-weighting keeps shortest paths Then by definition of $\hat{\delta}(u, x)$
 $$
\hat{\delta}(u, x)=\hat{w}(p a t h)
$$

$$
=\sum_{i=1}^{k} \hat{w}\left(v_{i-1}, v_{i}\right)
$$

$$
=\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)+h\left(v_{i-1}-h\left(v_{i}\right)\right.
$$

$$
=h\left(v_{0}\right)-h\left(v_{k}\right)+\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)
$$

$$
=h\left(v_{0}\right)-h\left(v_{k}\right)+\delta(u, x)
$$

Correctness

(1) Re-weighting keeps shortest paths Thus, the shortest path is just offset by " $\mathrm{h}\left(\mathrm{v}_{0}\right)-\mathrm{h}\left(\mathrm{v}_{\mathrm{k}}\right)$ " (also any path)

As v_{0} is the start vertex and v_{k} is the end, so vertices along the path have no influence on $\hat{\delta}(u, x)$ (same path)

Correctness

(2) Re-weighting makes edges >0

One of our "relaxation properties" is the "triangle inequality"

$\delta(s, v) \leq \delta(s, u)+w(u, v)$
$=0 \leq \delta(s, u)+w(u, v)-\delta(s, v)$
how h defined
$0 \leq w(u, v)+h(u)-h(v)=\hat{w}(u, v)$

All-Pairs Shortest Paths

INSTEAD OF JUST PLANNNG, MY NEW APP LETS YOU SEND "GHOST" VERSIONS OF YOU ALONG DIFFERENT ROUTES, SIMULATING THEIR TRAVEL USING THE REAL-TIME DATA

THAT WAY, YOU CAN SEE WHICH ROUTE TURNED OUT TO BE FASTER IN PRACTICE. YOUCAN ALSO RACE YOUR PAST SELVES.

500N.

TL;DR dynamic programming

What are two ways you can compute the Fibonacci numbers?
$\mathrm{F}_{\mathrm{n}}=\mathrm{F}_{\mathrm{n}-1}+\mathrm{F}_{\mathrm{n}-2}$
with $\mathrm{F}_{0}=0, \mathrm{~F}_{1}=1$
Which way is better?

TL;DR dynamic programming

One way, simply use the definition
Recursive:

F(n):

 if($n==1$ or $n==0$)return n
else return $\mathrm{F}(\mathrm{n}-1)+\mathrm{F}(\mathrm{n}-2)$

TL;DR dynamic programming

Another way, compute $F(2)$, then $F(3)$... until you get to $\mathrm{F}(\mathrm{n})$

Bottom up:
$\mathrm{A}[0]=0$
$\mathrm{A}[1]=1$
for $\mathrm{i}=2$ to n
$\mathrm{A}[\mathrm{i}]=\mathrm{A}[\mathrm{i}-1]+\mathrm{A}[\mathrm{i}-2]$

TL;DR dynamic programming

This second way is much faster
It turns out you can take pretty much any recursion and solve it this way (called "dynamic programming")

It can use a bit more memory, but much faster

TL;DR dynamic programming

How many multiplication operations does it take to compute:
$X^{4} ?$
X^{10} ?

TL;DR dynamic programming

How many multiplication operations does it take to compute:
x^{4} ? Answer: 2
x^{10} ? Answer: 4

TL;DR dynamic programming

Can compute x^{4} with 2 operations: $x^{2}=x * x$ (store this value)
$\mathrm{x}^{4}=\mathrm{x}^{2} * \mathrm{x}^{2}$
Save CPU by using more memory!
Can compute x^{n} using $\mathrm{O}(\lg \mathrm{n})$ ops Also true if x is a matrix

Shortest paths using matrices

Any sub-path $\left(p_{x, y}\right)$ of a shortest path $\left(\mathrm{p}_{\mathrm{u}, \mathrm{v}}\right)$ is also a shortest path

Thus we can recursively define a shortest path $\mathrm{p}_{0, \mathrm{k}}=\left\langle\mathrm{v}_{0}, \ldots, \mathrm{v}_{\mathrm{k}}\right\rangle$, as:

Shortest paths using matrices

Thus a shortest path (using less than m edges) can be defined as:
$L^{\mathrm{m}}=\mathrm{l}_{\mathrm{i}, \mathrm{j}}^{\mathrm{m}}=\min _{\mathrm{k}}\left(\mathrm{l}^{\mathrm{m}-1}{ }_{\mathrm{i}, \mathrm{k}}+\mathrm{l}_{\mathrm{k}, \mathrm{j}}^{1}\right)$,
where L^{1} is the edge weights matrix
Can use dynamic programming to find an efficient solution

Shortest paths using matrices

L^{m} is not the $\mathrm{m}^{\text {th }}$ power of L , but the operations are very similar:

$$
\begin{aligned}
& \mathrm{L}^{\mathrm{m}}=\mathrm{l}_{\mathrm{i}, \mathrm{j}}^{\mathrm{m}}=\min _{\mathrm{k}}\left(\mathrm{l}^{\mathrm{m}-1}{ }_{\mathrm{i}, \mathrm{k}}+\mathrm{l}_{\mathrm{k}, \mathrm{j}}^{1}\right) / / \text { ours } \\
& \mathrm{L}^{\mathrm{m}}=\mathrm{l}_{\mathrm{i}, \mathrm{j}}^{\mathrm{m}}=\sum_{\mathrm{k}}\left(\mathrm{l}_{\mathrm{i}, \mathrm{k}}^{\mathrm{m}-1}{ }^{*} \mathrm{l}_{\mathrm{k}, \mathrm{j}}^{1}\right) / / / \text { real times }
\end{aligned}
$$

Thus we can use our multiplication saving technique here too! (see: MatrixAPSPmult.java)

Shortest paths using matrices

All-pairs-shortest-paths(W)
$\mathrm{L}(1)=\mathrm{W}, \mathrm{n}=\mathrm{W}$.rows, $\mathrm{m}=1$
while $\mathrm{m}<\mathrm{n}$
$\mathrm{L}(2 \mathrm{~m})=\operatorname{ESP}(\mathrm{L}(\mathrm{m}), \mathrm{L}(\mathrm{m}))$
$\mathrm{m}=2 \mathrm{~m}$
return $\mathrm{L}(\mathrm{m})$
(ESP is L min op on previous slide)

Shortest paths using matrices

Runtime: $|\mathrm{V}|^{3} \lg |\mathrm{~V}|$

Correctness: By definition (brute force with some computation savers)

Floyd-Warshall

The Floyd-Warshall is similar but uses another shortest path property

Suppose we have a graph G, if we add a single vertex k to get G^{\prime}

We now need to recompute all shortest paths

Floyd-Warshall

Either the path goes through k, or remains unchanged

intermediate nodes in $\{1, \ldots, k-1\}$
intermediate nodes in
$\{1, \ldots, k-1\}$

intermediate nodes in

$$
\{1, \ldots, k\}
$$

$d_{i, j}^{k}=\min \left(d_{i, j}^{k-1}, d_{i, k}^{k-1}+d_{k, j}^{k-1}\right)$

Floyd-Warshall

Floyd-Warshall(W) // dynamic prog

$\mathrm{d}_{\mathrm{i}, \mathrm{j}}^{0}=\mathrm{W}_{\mathrm{i}, \mathrm{j}}, \mathrm{n}=\mathrm{W}$.rows
for $\mathrm{k}=1$ to n
for $\mathrm{i}=1$ to n
for $\mathrm{j}=1$ to n
$\mathrm{d}_{\mathrm{i}, \mathrm{j}}^{\mathrm{k}}=\min \left(\mathrm{d}_{\mathrm{i}, \mathrm{j}}^{\mathrm{k}-1}, \mathrm{~d}_{\mathrm{i}, \mathrm{k}}^{\mathrm{k}-1}+\mathrm{d}_{\mathrm{k}, \mathrm{j}}^{\mathrm{k}-1}\right)$

Floyd-Warshall

Runtime:
$\mathrm{O}\left(|\mathrm{V}|^{3}\right)$
Correctness:
Again, by definition of shortest path

