All-Pairs Shortest Paths

LOTS OF APPS LETYOU | INSTEAD OF JUST RLAWWIMG | THAT LPY, YOU CAN SEE
PLAN YOUR TRIPS VSING | TY NEW APP LETS YOU SEND | WHICH ROUTE TURNED oUT
REAL-TME. BuS, TRAN, "GHﬂﬁg . VEﬁﬁr%hrﬂE; OFYOU | TOBE FASTER \nu PRACTICE.
AND TRAFFIC DATA. ALONG DIFFERENT ROUTES,
THEY TRY TO PREDICT UHICH | SMULATING THEIR TRAVEL | YOUCAN ALSO RACE
ROUTE UILL BE FASTER, | USING THE. REAL-TIME DATA | YOUR PAST SELVES.
BUT AREN'T ALJAYS RIGHT, (
s .
HEY, MY KEY LWJONT LJORK. | | OUR AW DAD NEVER
I
B— MISSES OUR GAMES!
DECIDED To REPLACE YOU.
THIS FLOATY GUY 15
UGH, LOsT To THE MUCH MORE PUNCTUAL. ANoer!
BIKE GHOST AGAN/. |

/

=0

|)

b3

)
R %ﬁi‘]

What are two ways you can compute
the Fibonacci numbers?

TL;DR dynamic programming

Fn - Fn—l T Fn—Z
with F =0, F =1

Which way is better?

TL;DR dynamic programming
One way, simply use the definition

Recursive:
F(n):
if(n==1 or n==0)
return n
else return F(n-1)+F(n-2)

Another way, compute F(2), then F(3)
I ... until you get to F(n)

TL;DR dynamic programming

Bottom up:
A[0]=0
All]=1

fori=2ton
Ali]l = Ali-1] + Ali-2]

TL;DR dynamic programming

This second way is much faster

[t turns out you can take pretty much
any recursion and solve it this way
(called “dynamic programming”)

[t can use a bit more memory,
but much faster

How many multiplication operations
I does it take to compute:

TL;DR dynamic programming

How many multiplication operations
I does it take to compute:

TL;DR dynamic programming

x*? Answer: 2

x19? Answer: 4

Can compute x* with 2 operations:
X* = X * x (store this value)
x4 = x2 * x2

TL;DR dynamic programming

Save CPU by using more memory!

Can compute x" using O(lg n) ops
Also true if x is a matrix

I9

I path (p) is also a shortest path

x ..PJ.T -~ -!!JZI"' g

Shortest paths using matrices

Any sub-path (p,) of a shortest

Thus we can recursively define a
shortest path Por = <Vg» ++s V>, @S

w(p,,)=min, . (W(p, 4)T W("k-1",k))

Ilo

I Shortest paths using matrices
Thus a shortest path (using less than
I m edges) can be defined as:

m — |m — y m-1 1
L = min, (I, +1 k,J.),

1,]

where L' is the edge weights matrix

Can use dynamic programming to
find an efficient solution

I11

I Shortest paths using matrices
L™ is not the m™ power of L, but

I the operations are very similar:

Lm=1m. = min, (1™, + llk,j) // ours

m=Im o= Y lm'li,k*llk,j) //real times
Thus we can use our multiplication
saving technique here too!
(see: MatrixAPSPmult.java)

I Shortest paths using matrices
All-pairs-shortest-paths(W)
I L(1)=W,n=W.rows, m =1
while m <n

L(2m) = ESP(L(m), L(m))

m = 2m
return L(m)

(ESP is L. min op on previous slide)

I13

I Shortest paths using matrices
Runtime:

| vieig v

Correctness:
By definition (brute force with some
computation savers)

I Floyd-Warshall

The Floyd-Warshall is similar but
I uses another shortest path property

Suppose we have a graph G, if we
add a single vertex k to get G'

We now need to recompute all
shortest paths

I Floyd-Warshall

Either the path goes through Kk,
I or remains unchanged

intermediate nodes in intermediate nodes in
{1,...,k-11 {1,...,k-1}

. |'jl k =
|_/__/\—> w]

intermediate nodes in

110Ky

K — 1] k-1 k-1 k-1
d* =min (d“' , &' +d',)

I Floyd-Warshall

Floyd-Warshall(W) // dynamic prog
dOLj = Wi,j, n = W.rows
fork=1ton

fori=1ton

forj=1ton

K — mi k-1 k-1 k-1
d* =min (d“' , &' +d',)

I Floyd-Warshall

Runtime:
| o(vp)

Correctness:
Again, by definition of shortest path

