
  

All-Pairs Shortest Paths
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TL;DR dynamic programming

What are two ways you can compute
the Fibonacci numbers?

F
n
 = F

n-1
 + F

n-2

with F
0
=0, F

1
=1

Which way is better?
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TL;DR dynamic programming

One way, simply use the definition

Recursive:
F(n):

if(n==1 or n==0)
return n

else return F(n-1)+F(n-2)
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TL;DR dynamic programming

Another way, compute F(2), then F(3)
... until you get to F(n)

Bottom up:
A[0] = 0
A[1] = 1
for i = 2 to n

A[i] = A[i-1] + A[i-2]
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TL;DR dynamic programming

This second way is much faster

It turns out you can take pretty much
any recursion and solve it this way
(called “dynamic programming”)

It can use a bit more memory,
but much faster
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TL;DR dynamic programming

How many multiplication operations 
does it take to compute:

x4?

x10?
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TL;DR dynamic programming

How many multiplication operations 
does it take to compute:

x4? Answer: 2

x10? Answer: 4
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TL;DR dynamic programming

Can compute x4 with 2 operations:
x2 = x * x  (store this value)
x4 = x2 * x2

Save CPU by using more memory!

Can compute xn using O(lg n) ops
Also true if x is a matrix

8



  

Shortest paths using matrices

Any sub-path (p
x,y

) of a shortest 
path (p

u,v
) is also a shortest path

Thus we can recursively define a
shortest path p

0,k
 = <v

0
, ..., v

k
>, as:

w(p
0,k

)=min
“k-1”

(w(p
0,“k-1”

)+w(“k-1”,k))
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Shortest paths using matrices

Thus a shortest path (using less than
m edges) can be defined as:

Lm = lm
i,j
 = min

k
(lm-1

i,k
 + l1

k,j
),

where L1 is the edge weights matrix

Can use dynamic programming to 
find an efficient solution
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Shortest paths using matrices

Lm is not the mth power of L, but
the operations are very similar:

Lm = lm
i,j
 = min

k
(lm-1

i,k
 + l1

k,j
) // ours

Lm = lm
i,j
 = ∑

k
( lm-1

i,k
*l1

k,j
) //real times

Thus we can use our multiplication
saving technique here too!
(see: MatrixAPSPmult.java)
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Shortest paths using matrices

All-pairs-shortest-paths(W)
L(1) = W, n = W.rows, m  = 1
while m < n

L(2m) = ESP(L(m), L(m))
m = 2m

return L(m)

(ESP is L min op on previous slide)
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Shortest paths using matrices

Runtime:
|V|3 lg |V|

Correctness:
By definition (brute force with some
computation savers)
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Floyd-Warshall

The Floyd-Warshall is similar but
uses another shortest path property

Suppose we have a graph G, if we 
add a single vertex k to get G'

We now need to recompute all
shortest paths
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Floyd-Warshall

Either the path goes through k,
or remains unchanged

dk
i,j
 = min (dk-1

i,j
, dk-1

i,k
 + dk-1

k,j
)
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Floyd-Warshall

Floyd-Warshall(W) // dynamic prog
d0

i,j
 = W

i,j
, n = W.rows

for k = 1 to n
for i = 1 to n

for j = 1 to n
dk

i,j
 = min (dk-1

i,j
, dk-1

i,k
 + dk-1

k,j
)
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Floyd-Warshall

Runtime:
O(|V|3)

Correctness:
Again, by definition of shortest path
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