## All-Pairs Shortest Paths



INSTEAD OF JUST PLANNNG, MY NEW APP LETS YOU SEND "GHOST" VERSIONS OF YOU ALONG DIFFERENT ROUTES, SIMULATING THEIR TRAVEL USING THE REAL-TIME DATA


THAT WAY, YOU CAN SEE WHICH ROUTE TURNED OUT TO BE FASTER IN PRACTICE. YOUCAN ALSO RACE YOUR PAST SELVES.


## 500 N.

HEY, MY KEY WONT WORK
IM SORRY, BUT WEVE
DECIDEDTOREPLACE YO
THIS FOATY GUY IS
MUCH MORE PUNCTUAL
BUT...

## TL;DR dynamic programming

What are two ways you can compute the Fibonacci numbers?
$\mathrm{F}_{\mathrm{n}}=\mathrm{F}_{\mathrm{n}-1}+\mathrm{F}_{\mathrm{n}-2}$
with $\mathrm{F}_{0}=0, \mathrm{~F}_{1}=1$
Which way is better?

## TL;DR dynamic programming

One way, simply use the definition
Recursive:

## F(n):

 if( $n==1$ or $n==0$ )return n
else return $\mathrm{F}(\mathrm{n}-1)+\mathrm{F}(\mathrm{n}-2)$

## TL;DR dynamic programming

Another way, compute $F(2)$, then $F(3)$ ... until you get to F(n)

Bottom up:
$\mathrm{A}[0]=0$
$\mathrm{A}[1]=1$
for $\mathrm{i}=2$ to n
$\mathrm{A}[\mathrm{i}]=\mathrm{A}[\mathrm{i}-1]+\mathrm{A}[\mathrm{i}-2]$

# TL;DR dynamic programming 

This second way is much faster
It turns out you can take pretty much any recursion and solve it this way (called "dynamic programming")

It can use a bit more memory, but much faster

# TL;DR dynamic programming 

How many multiplication operations does it take to compute:
$X^{4} ?$
$X^{10}$ ?

# TL;DR dynamic programming 

How many multiplication operations does it take to compute:
x ${ }^{4}$ ? Answer: 2
$x^{10}$ ? Answer: 4

# TL;DR dynamic programming 

Can compute $\mathrm{x}^{4}$ with 2 operations: $x^{2}=x * x$ (store this value)
$\mathrm{x}^{4}=\mathrm{x}^{2} * \mathrm{x}^{2}$
Save CPU by using more memory!
Can compute $\mathrm{x}^{\mathrm{n}}$ using $\mathrm{O}(\lg \mathrm{n})$ ops Also true if $x$ is a matrix

## Shortest paths using matrices

Any sub-path ( $\mathrm{p}_{\mathrm{x}, \mathrm{y}}$ ) of a shortest path $\left(\mathrm{p}_{\mathrm{u}, \mathrm{v}}\right)$ is also a shortest path


Thus we can recursively define a shortest path $\mathrm{p}_{0, \mathrm{k}}=\left\langle\mathrm{v}_{0}, \ldots, \mathrm{v}_{\mathrm{k}}\right\rangle$, as:
$\mathrm{w}\left(\mathrm{p}_{0, \mathrm{k}}\right)=\min _{{ }^{\mathrm{k} k-1}}\left(\mathrm{w}\left(\mathrm{p}_{0,{ }^{\prime} \mathrm{k}-1 \mathrm{p}}\right)+\mathrm{w}\left({ }^{\prime "} \mathrm{k}-1 ", \mathrm{k}\right)\right)$

## Shortest paths using matrices

Thus a shortest path (using less than m edges) can be defined as:
$L^{\mathrm{m}}=\mathrm{l}_{\mathrm{i}, \mathrm{j}}^{\mathrm{m}}=\min _{\mathrm{k}}\left(\mathrm{l}^{\mathrm{m}-1}{ }_{\mathrm{i}, \mathrm{k}}+\mathrm{l}_{\mathrm{k}, \mathrm{j}}^{1}\right)$,
where $\mathrm{L}^{1}$ is the edge weights matrix
Can use dynamic programming to find an efficient solution

## Shortest paths using matrices

$\mathrm{L}^{\mathrm{m}}$ is not the $\mathrm{m}^{\text {th }}$ power of L , but the operations are very similar:

$$
\begin{aligned}
& \mathrm{L}^{\mathrm{m}}=\mathrm{l}_{\mathrm{i}, \mathrm{j}}^{\mathrm{j}}=\min _{\mathrm{k}}\left(\mathrm{l}^{\mathrm{m}-1}{ }_{\mathrm{i}, \mathrm{k}}+\mathrm{l}_{\mathrm{k}, \mathrm{j}}^{1}\right) / / \text { ours } \\
& \mathrm{L}^{\mathrm{m}}=\mathrm{l}_{\mathrm{i}, \mathrm{j}}^{\mathrm{m}}=\sum_{\mathrm{k}}\left(\mathrm{l}_{\mathrm{i}, \mathrm{k}}^{\mathrm{m}-1}{ }^{*} \mathrm{l}_{\mathrm{k}, \mathrm{j}}^{1}\right) / / \text { real times }
\end{aligned}
$$

Thus we can use our multiplication saving technique here too! (see: MatrixAPSPmult.java)

## Shortest paths using matrices

All-pairs-shortest-paths(W)
$\mathrm{L}(1)=\mathrm{W}, \mathrm{n}=\mathrm{W}$.rows, $\mathrm{m}=1$
while $\mathrm{m}<\mathrm{n}$
$L(2 m)=\operatorname{ESP}(L(m), L(m))$
$\mathrm{m}=2 \mathrm{~m}$
return $\mathrm{L}(\mathrm{m})$
(ESP is L min op on previous slide)

## Shortest paths using matrices

## Runtime: <br> $|\mathrm{V}|^{3} \lg |\mathrm{~V}|$

Correctness:
By definition (brute force with some computation savers)

## Floyd-Warshall

The Floyd-Warshall is similar but uses another shortest path property

Suppose we have a graph G, if we add a single vertex $k$ to get $G^{\prime}$

We now need to recompute all shortest paths

## Floyd-Warshall

## Either the path goes through k, or remains unchanged

intermediate nodes in $\{1, \ldots, k-1\}$
intermediate nodes in
$\{1, \ldots, k-1\}$

intermediate nodes in

$$
\{1, \ldots, k\}
$$

$d_{i, j}^{k}=\min \left(d_{i, j}^{k-1}, d_{i, k}^{k-1}+d_{k, j}^{k-1}\right)$

## Floyd-Warshall

Floyd-Warshall(W) // dynamic prog
$\mathrm{d}_{\mathrm{i}, \mathrm{j}}^{0}=\mathrm{W}_{\mathrm{i}, \mathrm{j}}, \mathrm{n}=\mathrm{W}$.rows
for $\mathrm{k}=1$ to n
for $\mathrm{i}=1$ to n
for $\mathrm{j}=1$ to n
$\mathrm{d}_{\mathrm{i}, \mathrm{j}}^{\mathrm{k}}=\min \left(\mathrm{d}_{\mathrm{i}, \mathrm{j}}^{\mathrm{k}-1}, \mathrm{~d}_{\mathrm{i}, \mathrm{k}}^{\mathrm{k}-1}+\mathrm{d}_{\mathrm{k}, \mathrm{j}}^{\mathrm{k}-1}\right)$

## Floyd-Warshall

Runtime:
$\mathrm{O}\left(|\mathrm{V}|^{3}\right)$
Correctness:
Again, by definition of shortest path

