

All-Pairs Shortest Paths

1

TL;DR dynamic programming

What are two ways you can compute
the Fibonacci numbers?

F
n
 = F

n-1
 + F

n-2

with F
0
=0, F

1
=1

Which way is better?

2

TL;DR dynamic programming

One way, simply use the definition

Recursive:
F(n):

if(n==1 or n==0)
return n

else return F(n-1)+F(n-2)

3

TL;DR dynamic programming

Another way, compute F(2), then F(3)
... until you get to F(n)

Bottom up:
A[0] = 0
A[1] = 1
for i = 2 to n

A[i] = A[i-1] + A[i-2]

4

TL;DR dynamic programming

This second way is much faster

It turns out you can take pretty much
any recursion and solve it this way
(called “dynamic programming”)

It can use a bit more memory,
but much faster

5

TL;DR dynamic programming

How many multiplication operations
does it take to compute:

x4?

x10?

6

TL;DR dynamic programming

How many multiplication operations
does it take to compute:

x4? Answer: 2

x10? Answer: 4

7

TL;DR dynamic programming

Can compute x4 with 2 operations:
x2 = x * x (store this value)
x4 = x2 * x2

Save CPU by using more memory!

Can compute xn using O(lg n) ops
Also true if x is a matrix

8

Shortest paths using matrices

Any sub-path (p
x,y

) of a shortest
path (p

u,v
) is also a shortest path

Thus we can recursively define a
shortest path p

0,k
 = <v

0
, ..., v

k
>, as:

w(p
0,k

)=min
“k-1”

(w(p
0,“k-1”

)+w(“k-1”,k))

9

Shortest paths using matrices

Thus a shortest path (using less than
m edges) can be defined as:

Lm = lm
i,j
 = min

k
(lm-1

i,k
 + l1

k,j
),

where L1 is the edge weights matrix

Can use dynamic programming to
find an efficient solution

10

Shortest paths using matrices

Lm is not the mth power of L, but
the operations are very similar:

Lm = lm
i,j
 = min

k
(lm-1

i,k
 + l1

k,j
) // ours

Lm = lm
i,j
 = ∑

k
(lm-1

i,k
*l1

k,j
) //real times

Thus we can use our multiplication
saving technique here too!
(see: MatrixAPSPmult.java)

11

Shortest paths using matrices

All-pairs-shortest-paths(W)
L(1) = W, n = W.rows, m = 1
while m < n

L(2m) = ESP(L(m), L(m))
m = 2m

return L(m)

(ESP is L min op on previous slide)

12

Shortest paths using matrices

Runtime:
|V|3 lg |V|

Correctness:
By definition (brute force with some
computation savers)

13

Floyd-Warshall

The Floyd-Warshall is similar but
uses another shortest path property

Suppose we have a graph G, if we
add a single vertex k to get G'

We now need to recompute all
shortest paths

14

Floyd-Warshall

Either the path goes through k,
or remains unchanged

dk
i,j
 = min (dk-1

i,j
, dk-1

i,k
 + dk-1

k,j
)

15

Floyd-Warshall

Floyd-Warshall(W) // dynamic prog
d0

i,j
 = W

i,j
, n = W.rows

for k = 1 to n
for i = 1 to n

for j = 1 to n
dk

i,j
 = min (dk-1

i,j
, dk-1

i,k
 + dk-1

k,j
)

16

Floyd-Warshall

Runtime:
O(|V|3)

Correctness:
Again, by definition of shortest path

17

