Network Flow

Ford-Fulkerson

What is a residual graph?

Forward edges = capacity left

 Back edges = flow

Ford-Fulkerson

Idea: Find a way to add some flow, modify graph to show this flow reserved... repeat.

Ford-Fulkerson

Ford-Fulkerson(G, s, t)
initialize network flow to 0 while (exists path from s to t) augment flow, f, in G along path return f
(Note: "augment flow" means add this flow to network)

Ford-Fulkerson

Ford-Fulkerson

Subscript " f " denotes residual (or modified graph)
$\mathrm{G}_{\mathrm{f}}=$ residual graph "forward edge" capacity - flow
$\mathrm{E}_{\mathrm{f}}=$ residual edges
$\mathrm{c}_{\mathrm{f}}=$ residual capacity
$\mathrm{c}_{\mathrm{f}}(\mathrm{u}, \mathrm{v})=\mathrm{c}(\mathrm{u}, \mathrm{v})-\mathrm{f}(\mathrm{u}, \mathrm{v}) \quad$ "back edge"
$\mathrm{c}_{\mathrm{f}}(\mathrm{v}, \mathrm{u})=\mathrm{f}(\mathrm{u}, \mathrm{v})$

Ford-Fulkerson

Ford-Fulkerson(G, s, t)
for: each edge (u,v) in G.E: (u,v).f=0
while: exists path from s to t in G_{f}
find $c_{f}(p) / /$ minimum edge cap. on path
for: each edge (u, v) in p

$$
\begin{aligned}
& \text { if(u,v) in } E:(u, v) \cdot f=(u, v) \cdot f+c_{f}(p) \\
& \text { else: }(v, u) \cdot f=(v, u) \cdot f-c_{f}(p)
\end{aligned}
$$

Max flow, min cut

Ford-Fulkerson

Runtime:

How hard is it to find a path?
How many possible paths could you find?

Ford-Fulkerson

Runtime:

How hard is it to find a path? -O(E) (via BFS or DFS)
How many possible paths could you find?

- |f*| (paths might use only 1 flow)
.... so, $\mathrm{O}\left(\mathrm{E}\left|\mathrm{f}^{*}\right|\right)$

Edmonds-Karp

Ford 「ullkerson(G, s, t)
for: each edge (u, v) in $\mathrm{C} . \mathrm{E}$: (u,v).f=0
while: exists path from's to t in G_{f}
find $c_{f}(p) / /$ minimum edge cap.
for: each edge (u, v) in p if(u,v) in $E:(u, v) . f=(u, v) . f+c_{f}(p)$
else: (u,v).f=(u,v).f - $\mathrm{c}_{\mathrm{f}}(\mathrm{p})$

Edmonds-Karp

Lemma 26.7

Shortest path in G_{f} is non-decreasing

Theorem 26.8

Number of flow augmentations by
Edmonds-Karp is $\mathrm{O}(|\mathrm{V}| \mathrm{E} \mid)$
So, total running time: $\mathrm{O}\left(|\mathrm{V}||\mathrm{E}|^{2}\right)$

Ford-Fulkerson

$\left(\mathrm{f} \uparrow \mathrm{f}^{\prime}\right)(\mathrm{u}, \mathrm{v})=$ flow f augmented by f^{\prime}
$\left(f \uparrow f^{\prime}\right)(u, v)=f(u, v)+f^{\prime}(u, v)-f^{\prime}(v, u)$
Lemma 26.1: Let f be the flow in G , and f^{\prime} be a flow in G_{f}, then ($\mathrm{f} \uparrow \mathrm{f}^{\prime}$) is a flow in G with total amount: $\left|f \uparrow f^{\prime}\right|=|f|+\left|f^{\prime}\right|$
Proof: pages 718-719

Ford-Fulkerson

For some path p:

$c_{f}(p)=\min \left(c_{f}(u, v):(u, v)\right.$ on $\left.p\right)$
$\wedge \wedge$ (capacity of path is smallest edge)
Claim 26.3:
Let $f_{p}=c_{f}(p)$, then
$\left|f \uparrow f_{p}\right|=|f|+\left|f_{p}\right|$

Ford-Fulkerson

More bad notation:

 $c(u, v)=$ capacity of an edge if u and v are single vertexes$\mathrm{c}(\mathrm{S}, \mathrm{T})=$ capacity across a cut if S and T are sets of vertexes ... Similarly for $f(u, v)$ and $f(S, T)$

Max flow, min cut

Relationship between cuts and flows?

 $c(S, T)=\sum_{u \text { in } s} \sum_{\text {win } T} c(u, v)$$f(S, T)=\sum_{u \text { in } S} \sum_{v \text { in } T} f(u, v)-\sum_{u} \sum_{v} f(v, u)$

Max flow, min cut

Relationship between cuts and flows? $\mathrm{c}(\mathrm{S}, \mathrm{T})=\sum_{\mathrm{u} \text { in } \mathrm{S}} \sum_{\mathrm{vin} \mathrm{T}} \mathrm{c}(\mathrm{u}, \mathrm{v})$ $f(S, T)=\sum_{u \text { in } S} \sum_{v \text { in } T} f(u, v)-\sum_{u} \sum_{v} f(v, u)$

cut capacity \geq flows across cut

Max flow, min cut

Lemma 26.4

Let (S, T) be any cut, then $f(S, T)=|f|$
Proof:
Page 722
(Kinda long)

Max flow, min cut

Corollary 26.5

Flow is not larger than cut capacity
Proof:
$|f|=\sum_{u \text { ins }} \sum_{v \text { vin }} f(u, v)-\sum_{u} \sum_{v} f(v, u)$
$\leq \sum_{\mathrm{u} \text { in } \mathrm{S}} \sum_{\mathrm{v} \text { in } \mathrm{T}} \mathrm{f}(\mathrm{u}, \mathrm{V})$
$\leq \sum_{\mathrm{u} \text { in } \mathrm{S}} \sum_{\mathrm{v} \text { in } \mathrm{T}} \mathrm{C}(\mathrm{u}, \mathrm{V})$
$=c(S, T)$

Max flow, min cut

Theorem 26.5 All 3 are equivalent: 1. f is a max flow
2. Residual network has no aug. path 3. $|f|=c(S, T)$ for some cut (S,T) maximum network flow
Proof: = min cut (i.e. bottlneck)
Will show: $1=>2,2=>3,3=>1$

Max flow, min cut

f is a max flow $=>$ Residual network has no augmenting path

Proof:
Assume there is a path p $\left|f \uparrow f_{p}\right|=|f|+\left|f_{p}\right|>|f|$, which is a
contradiction to $|\mathrm{f}|$ being a max flow

Max flow, min cut

Residual network has no aug. path => $|f|=c(S, T)$ for some cut (S,T)
Proof:
Let $S=$ all vertices reachable from s in G_{f}
u in S, v in $T=>f(u, v)=c(u, v)$ else there would be path in G_{f}

Max flow, min cut

Also, $\mathrm{f}(\mathrm{v}, \mathrm{u})=0$ else $\mathrm{c}_{\mathrm{f}}(\mathrm{u}, \mathrm{v})>0$ and again v would be reachable from s

$$
\begin{aligned}
\mathrm{f}(\mathrm{~S}, \mathrm{~T}) & =\sum_{\mathrm{u} \text { in } \mathrm{S}} \sum_{\mathrm{vin} \mathrm{~T}} \mathrm{f}(\mathrm{u}, \mathrm{v})-\sum_{\mathrm{u}} \sum_{\mathrm{v}} \mathrm{f}(\mathrm{v}, \mathrm{u}) \\
& =\sum_{\mathrm{u} \text { in } \mathrm{S}} \sum_{\mathrm{vin} \mathrm{~T}} \mathrm{c}(\mathrm{u}, \mathrm{v})-\sum_{\mathrm{u}} \sum_{\mathrm{v}} 0 \\
& =\mathrm{c}(\mathrm{~S}, \mathrm{~T})
\end{aligned}
$$

Max flow, min cut

$|f|=c(S, T)$ for some cut (S,T)
 $=>\mathrm{f}$ is a max flow

Proof:
$|\mathrm{f}| \leq \mathrm{c}(\mathrm{S}, \mathrm{T})$ for all cuts (S,T)
Thus trivially true, as $|\mathrm{f}|$ cannot get larger than C(S,T)

Matching

Another application of network flow is maximizing (number of)matchings in a bipartite graph

Each node cannot be "used" twice

Matching

Add "super sink" and "super source" (and direct edges source -> sink) capacity $=1$ on all edges s

Efficient matrix multiplication

Matrix multiplication

If you have square matrices A and B , then $\mathrm{C}=\mathrm{A} * \mathrm{~B}$ is defined as:

$c_{i, j}=\sum_{k=0}^{n} a_{i, k} \cdot b_{k, j}$
For $\mathbf{A}=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$ and $\mathbf{B}=\left[\begin{array}{cc}5 & 4 \\ -5 & 1\end{array}\right]$
$\mathbf{A B}=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]\left[\begin{array}{cc}5 & 4 \\ -5 & 1\end{array}\right]=\left[\begin{array}{ll}5 & 4 \\ 5 & 9\end{array}\right]$
$\mathbf{B A}=\left[\begin{array}{cc}5 & 4 \\ -5 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]=\left[\begin{array}{cc}13 & 4 \\ -3 & 1\end{array}\right]$
Takes $\mathrm{O}\left(\mathrm{n}^{3}\right)$ time

Matrix multiplication

Can we do better?

What is the theoretical lowest running time possible?

Matrix multiplication

Can we do better?

Yes!
What is the theoretical lowest running time possible?
$\mathrm{O}\left(\mathrm{n}^{2}\right)$, must read every value at least once

Matrix multiplication

Block matrix multiplication says:

$$
\left[\begin{array}{l|l}
\mathbf{A}_{1} & \mathbf{A}_{2} \\
\hline \mathbf{A}_{3} & \mathbf{A}_{4}
\end{array}\right]\left[\begin{array}{l|l}
\mathbf{B}_{1} & \mathbf{B}_{2} \\
\hline \mathbf{B}_{3} & \mathbf{B}_{4}
\end{array}\right]=\left[\begin{array}{l|l}
\mathbf{C}_{1} & \mathbf{C}_{2} \\
\hline \mathbf{C}_{3} & \mathbf{C}_{4}
\end{array}\right]
$$

Thus $\mathrm{C}_{1}=\mathrm{A}_{1} * \mathrm{~B}_{1}+\mathrm{A}_{2} * \mathrm{~B}_{3}$,
We can use this fact to make a recursive definition

Matrix multiplication

Divide\&conquer algorithm:
Mult(A,B)
If $|\mathrm{A}|==1$, return A * B (scalar)
else... divide A\&B into 4 equal parts

$$
\begin{aligned}
& \mathrm{C} 1=\operatorname{Mult}(\mathrm{A} 1, \mathrm{~B} 1)+\operatorname{Mult}(\mathrm{A} 2, \mathrm{~B} 3) \\
& \mathrm{C} 2=\operatorname{Mult}(\mathrm{A} 1, \mathrm{~B} 2)+\operatorname{Mult}(\mathrm{A} 2, \mathrm{~B} 4) \\
& \mathrm{C} 3=\operatorname{Mult}(\mathrm{A} 3, \mathrm{~B} 1)+\operatorname{Mult}(\mathrm{A} 4, \mathrm{~B} 3) \\
& \mathrm{C} 4=\operatorname{Mult}(\mathrm{A} 3, \mathrm{~B} 2)+\operatorname{Mult}(\mathrm{A} 4, \mathrm{~B} 4)
\end{aligned}
$$

Matrix multiplication

Running time:

Base case is $\mathrm{O}(1)$
Recursive part needs to add two $\mathrm{n} / 4 \mathrm{x} \mathrm{n/4} \mathrm{matrices} ,\mathrm{so} \mathrm{O(n²)}$ 8 recursive calls, each size $n / 2$

$$
\begin{aligned}
& \mathrm{T}(\mathrm{n})=8 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{O}\left(\mathrm{n}^{2}\right) \\
& \mathrm{T}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{\log 28}\right)=\mathrm{O}\left(\mathrm{n}^{3}\right)
\end{aligned}
$$

Strassen's method

Although the simple divide\&conquer did not improve running time...

Can eliminate one recursive call to get $\mathrm{O}\left(\mathrm{n}^{\log _{2} 7}\right)$ with fancy math

Has a much larger constant factor, so not useful unless matrix big

Strassen's method

Step 1: compute some S's (just 'cause!)

$\mathrm{S} 1=\mathrm{B} 2-\mathrm{B} 4$
$\mathrm{S} 6=\mathrm{B} 1+\mathrm{B} 4$
$\mathrm{S} 2=\mathrm{A} 1+\mathrm{A} 2$
S7=A2-A4
S3=A3+A4
$\mathrm{S} 8=\mathrm{B} 3+\mathrm{B} 4$
S4=B3-B1
S9=A1-A3
$\mathrm{S} 5=\mathrm{A} 1+\mathrm{A} 4$
$\mathrm{S} 10=\mathrm{B} 1+\mathrm{B} 2$

Strassen's method

Step 2: compute some P's $(7<8)$
 P1=A1*S1
 P2=S2*B4
 P3=S3*B1

P4=A4*S4
P5=S5*S6
P6=S7*S8
P7=S9*S10

Strassen's method

Step 3: ${ }^{+\infty \times 1+1}$
$\mathrm{C} 1=\mathrm{P} 5+\mathrm{P} 4-\mathrm{P} 2+\mathrm{P} 6$
$\mathrm{C} 2=\mathrm{P} 1+\mathrm{P} 2$
$\mathrm{C} 3=\mathrm{P} 3+\mathrm{P} 4$
C 4 = P5 + P1 - P3 - P7
(Book works out algebra for you)

Strassen's method

In practice, you should never use this on a matrix smaller than 16×16

The break-point is debatable, but Strassen's is better if over 100×100

Theoretical methods exist to reduce to $\mathrm{O}\left(\mathrm{n}^{2.3728639}\right)$, but not practical at all

Fast Fourier Transform

The FFT is a very nice algorithm (ranks up there with bucket sort)

It has many uses, but we will use it to solve polynomial multiplication

Naive approach takes $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time (i.e. FOIL)

Fast Fourier Transform

Assume we have polynomials:

 $A(x)=\sum_{j=0}^{n} a_{j} \cdot x^{j}, B(x)=\sum_{j=0}^{n} b_{j} \cdot x^{j}$$\mathrm{C}(\mathrm{x})=\mathrm{A}(\mathrm{x}) * \mathrm{~B}(\mathrm{x})$
$C(x)=\sum_{j=0}^{2 \cdot n} c_{j} x^{j} \quad c_{j}=\sum_{k} a_{k} \cdot b_{j-k}$
$\mathrm{O}(\mathrm{n})$ per c_{j}, up to $2 \mathrm{nc} \mathrm{c}_{\mathrm{j}} \mathrm{s}=\mathrm{O}\left(\mathrm{n}^{2}\right)$

Fast Fourier Transform

Rather than directly computing $\mathrm{C}(\mathrm{x})$, map to a different representation
$A(x)=\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots\left(x_{n}, y_{n}\right)$
Theorem 30.1: If $\mathrm{x}_{\mathrm{i}} \neq \mathrm{x}_{\mathrm{j}}$ for all $\mathrm{i} \neq \mathrm{j}$,
then above gives a unique polynomial

Fast Fourier Transform

Proof: (direct)

Represent in matrix form:
$\left[1 \mathrm{x}_{0} \mathrm{x}_{0}{ }^{2} \ldots \mathrm{x}_{0}{ }^{\mathrm{n}}\right]\left[\mathrm{a}_{0}\right] \quad\left[\mathrm{y}_{0}\right]$
$\left[1 \mathrm{x}_{1} \mathrm{x}_{1}{ }^{2} \ldots \mathrm{x}_{1}^{\mathrm{n}}\right]\left[\mathrm{a}_{1}\right]=\left[\mathrm{y}_{1}\right]$
$\left[1 x_{n} x_{n}{ }^{2} \ldots x_{n}^{n}\right]\left[a_{n}\right] \quad\left[y_{n}\right]$
The left matrix is invertible, done

Fast Fourier Transform

Q: Why bother with point-values? A : We can do $\mathrm{A}(\mathrm{x}) * \mathrm{~B}(\mathrm{x})$ in $\mathrm{O}(\mathrm{n})$ in this space

Namely, $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{cy}_{\mathrm{i}}\right)=\left(\mathrm{x}_{\mathrm{i}}, \mathrm{ay}_{\mathrm{i}} * \mathrm{by}_{\mathrm{i}}\right)$
Need to get to point-value and back to coefficients in less than $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Fast Fourier Transform

Coming soon! (next time)

