

I2

Ford-Fulkerson

What is a residual graph?

Forward edges = capacity left
Back edges = flow
Orlgmal Residual

1V ‘hﬁ) > ®// 5\
ENPS N s

I3

Idea: Find a way to add some flow,
I modify graph to show this tlow

reserved... repeat.

Ford-Fulkerson

I Ford-Fulkerson(G, s, t)
I initialize network flow to 0
while (exists path from s to t)

augment flow, f, in G along path
return {

Ford-Fulkerson

(Note: “augment flow” means add
this flow to network)

I6

Subscript “f” denotes residual (or
I modified graph)
G, = residual graph

E, = residual edges

Ford-Fulkerson

ccforward edge”
capacity - flow

c, = residual capacity
c(u,v) = c(u,v) - f(u,v) “back edge”

c(v,u) = t(u,v) — justflow

I7

Ford-Fulkerson

Ford-Fulkerson(G, s, t)
I for: each edge (u,v) in G.E: (u,v).f=0
while: exists path from s to t in G,
find c/(p) // minimum edge cap. on path
for: each edge (u,v) in p
if(u,v) in E: (u,v).f=(u,v).f + c(p)
else: (v,u).f=(v,u).t - c(p)

Max flow, min cut

Ford-Fulkerson

I 9
Runtime:

How hard is it to find a path?

How many possible paths could
you find?

I1o

I Runtime:
How hard is it to find a path?
-O(E) (via BFS or DFS)
How many possible paths could
you find?
- |T*| (paths might use only 1 flow)
.... S0, O(E |t%*])

Ford-Fulkerson

I Edmonds-Karp

I exists shortest path (BFS)
—Ford-Futkersen(G, s, t)

I for: each edge (u,v) in G.E: (u,v).f=0
while: existspath-frem-ste-t+in-G—
find c(p) // minimum edge cap.

for: each edge (u,v) in p
if(u,v) in E: (u,v).f=(u,v).f + c(p)
else: (u,v).t=(u,v).tf - c(p)

I12

Lemma 26.7
I Shortest path in G, is non-decreasing

Edmonds-Karp

Theorem 26.8

Number of flow augmentations by
Edmonds-Karp is O(|V||E|)
So, total running time: O(|V||E|*)

I13

(f t £')(u,v) = flow f augmented by {'
| (1)W) = fuv) + Fy) - fvu)

Ford-Fulkerson

Lemma 26.1: Let f be the tflow in G,
and f' be a tlow in G, then (f 1)

is a flow in G with total amount:
it 1] = |t + |f]
Proof: pages 718-719

I14

For some path p:
| c(p) = min(c,(uv) : (wv) on p)
AN (capacity of path is smallest edge)

Ford-Fulkerson

Claim 26.3:
Let f]D = c/(p), then

fri]=I[t+]t)]
P P

I15

More bad notation:
I c(u,v) = capacity of an edge
if u and v are single vertexes

Ford-Fulkerson

c(S,T) = capacity across a cut
if S and T are sets of vertexes

... Similarly for f(u,v) and £(S,T)

I16

I Relationship between cuts and flows?

I C(S T) ~ Zu n Szva C(u V)
£(S,T) = ZumstmT f(u v)-2.2, fv,u)

Max flow, min cut

I17

I Relationship between cuts and flows?

I C(S T) ~ Zu n Szva C(u V)
£(S,T) = ZumstmT f(u v)-2.2, fv,u)

Max flow, min cut

cut capacit§; > flows across cut

I18

Lemma 26.4
I Let (S,T) be any cut, then £(S,T) = |{]

Max flow, min cut

Proot:
Page 722
(Kinda long)

I19

Corollary 26.5
I Flow is not larger than cut capacity
Proot:

1 =2 nsZenr HWV)-2 2 1(V,u)
< LumsZymr H(WY)
= Luinslyvint C(WY)
= ¢(S,T)

Max flow, min cut

I20

Theorem 26.5
I All 3 are equivalent:
1. fis a max flow
2. Residual network has no aug. path
3. |[f| = ¢(S,T) for some cut (S,T)
"\ maximum network flow

Proof: = min cut (i.e. bottlneck)
Will show: 1 => 2, 2=>3, 3=>1

Max flow, min cut

I21

f is a max flow => Residual network
I has no augmenting path

Max flow, min cut

Prootf:

Assume there is a path p
trt]=1t+|f]>|t], whichis a

contradiction to |f| being a max flow

I22

Residual network has no aug. path =>
I f| = ¢(S,T) for some cut (S,T)
Proof:
Let S = all vertices reachable from
sin G,

Max flow, min cut

uin S, vin T => f(u,v) = c(u,v) else
there would be path in G,

I23

Max flow, min cut

Also, f(v,u) = 0 else c(u,v) > 0 and
I again v would be reachable from s

f(S’T) :Zuin SZViDT f(u,V)-ZuZV f(V,U)
:Zuin SZVinT C(U,V)-ZUZV 0
=c(S,T)

4

Max flow, min cut

f| = ¢(S,T) for some cut (S,T)
=> 1 is a max flow

I2

Proot:
| < c(S,T) for all cuts (S,T)

Thus trivially true, as |f| cannot get
larger than C(S,T)

I Matching

Another application of network flow
I is maximizing (number of)matchings
in a bipartite graph

, ><5§: N] 3
) / IR\ q /f
/ VN [N

Each node cannot be “used” twice

I Matching

Add “super sink” and “super source”
I (and direct edges source -> sink)
capacity = 1 on all edges _ s

I Efficient matrix multiplication

Matrix multiplication

[f you have square matrices A and B,
then C = A*B is defined as:

Ci,j _y:k 0 @i,k * Ok, j

RS ETE
S R
w-[50 v]

Takes O(n°) time

Matrix multiplication

Can we do better?

What is the theoretical lowest
running time possible?

Matrix multiplication

Can we do better?
I Yes!

What is the theoretical lowest
running time possible?

O(n®), must read every value at least
once

Matrix multiplication

Block matrix multiplication says:

I A Ao [B;4 B| [C, |

5y Ayl | Bs B, | Cs C,

Thus C, = A *B, + A *B,

We can use this fact to make a
recursive definition

Matrix multiplication

Divide&conquer algorithm:
! Mult(A,B)

If |A| == 1, return A*B (scalar)

else... divide A&B into 4 equal parts
Cl = Mult(A1,B1) + Mult(A2,B3)
C2 = Mult(A1,B2) + Mult(A2,B4)
C3 = Mult(A3,B1) + Mult(A4,B3)
C4 = Mult(A3,B2) + Mult(A4,B4)

Matrix multiplication

Running time:
I Base case is O(1)
Recursive part needs to add two
n/4 x n/4 matrices, so O(n?)
8 recursive calls, each size n/2

T(n) =8 T(n/2) + O(n?)
T(n) = O(n"#*%) = O(n?)

Strassen's method

Although the simple divide&conquer
I did not improve running time...

Can eliminate one recursive call to
get O(n'°s*”) with fancy math

Has a much larger constant factor, so
not useful unless matrix big

Strassen's method

Step 1: compute some S's

(just 'cause!)

S1=B2-B4
S2=A1+A2
S3=A3+A4
S4=B3-B1
S5=A1+A4

S6=B1+B4
S7=A2-A4
S8=B3+B4
S9=A1-A3
S10=B1+B2

Strassen's method

Step 2: compute some P's (7 < 8)
P1=A1*S1

P2=S2*B4

P3=S3*B1

P4=A4*S54

P5=S5*56

P6=S7*S8

P7=S9*S10

Strassen's method

Step 3: Hf.tl\/l*ogjicl
Q\z +
Cl=P5+P4-P2+P6
C2 =P1 + P2
C3=P3+ P4
C4=P5+P1-P3-P7

(Book works out algebra for you)

Strassen's method

In practice, you should never use
this on a matrix smaller than 16x16

The break-point is debatable, but
Strassen's is better if over 100x100

Theoretical methods exist to reduce
to O(n**"#%*), but not practical at all

The FFT is a very nice algorithm
I (ranks up there with bucket sort)

Fast Fourier Transform

[t has many uses, but we will use
it to solve polynomial multiplication

Naive approach takes O(n?) time
(i.e. FOIL)

Assume we have polynomlals

Fast Fourier Transform

I z_: a; -1, B(x) = ;Ob .)
C(x) = A(X) B(x)
C(x) = chxﬂ ¢ = 2.k bjk

O(n) per C,upto2nc's = O(n?)

Fast Fourier Transform

Rather than directly computing C(x),
I map to a different representation

AX) = (X ¥o)s (X, ¥,)5 o (X, ¥)

Theorem 30.1: If X # X foralli#j,
then above gives a unique polynomial

Fast Fourier Transform

Proof: (direct)
I Represent in matrix form:

[1x, x°...x"]la,] L[y,
[1x, x*...x"][a]= ly,]

[1x x*..x"][a] [y]
The left matrix is invertible, done

Q: Why bother with point-values?
| A: We can do A(x) * B(x) in O(n)
in this space

Fast Fourier Transform

Namely, (x, cy.) = (X, ay,*by)

Need to get to point-value and back
to coefficients in less than O(n?)

Fast Fourier Transform

Aal), Bla))] * Clat,)
A{fﬂ-_!,:]. Hlim_;!”} - Pointwise multiplication s {_-{mjlﬂj

: Time i
A2, B@) | Ciag ™)

Coming soon! (next time)

s By o G _ Oirdlinary nmltiplita‘.iun i o et '
by By wn B, Time Bin) | S #
T : A
Evaluation * [nterpolation

Time B(n lz 1) done | Time Gn la 1)

| Coefficient
O orepresentaiions
]

| Pomnt-value
I [EPrescniaclons

