Network Flow
Ford-Fulkerson

What is a residual graph?

Forward edges = capacity left
Back edges = flow

Original

Residual
Ford-Fulkerson

Idea: Find a way to add some flow, modify graph to show this flow reserved... repeat.

Augment
Ford-Fulkerson

Ford-Fulkerson(G, s, t)
initialize network flow to 0
while (exists path from s to t)
 augment flow, f, in G along path
return f

(Note: “augment flow” means add this flow to network)
Ford-Fulkerson
Subscript “f” denotes residual (or modified graph) $G_f = \text{residual graph}$, $E_f = \text{residual edges}$, $c_f = \text{residual capacity}$.

$c_f(u,v) = c(u,v) - f(u,v)$
$c_f(v,u) = f(u,v)$
Ford-Fulkerson

Ford-Fulkerson(G, s, t)
for: each edge (u,v) in G.E: (u,v).f=0
while: exists path from s to t in G_f
 find $c_f(p)$ // minimum edge cap. on path
 for: each edge (u,v) in p
 if(u,v) in E: (u,v).f=(u,v).f + $c_f(p)$
 else: (v,u).f=(v,u).f - $c_f(p)$
Max flow, min cut
Ford-Fulkerson

Runtime:

How hard is it to find a path?

How many possible paths could you find?
Ford-Fulkerson

Runtime:

How hard is it to find a path?
- $O(E)$ (via BFS or DFS)

How many possible paths could you find?
- $|f^*|$ (paths might use only 1 flow)

.... so, $O(E |f^*|)$
Edmonds-Karp
exists shortest path (BFS)

Ford-Fulkerson(G, s, t)
for: each edge (u,v) in G.E: (u,v).f=0
while: exists path from s to t in G_f
find c_f(p) // minimum edge cap.
for: each edge (u,v) in p
 if(u,v) in E: (u,v).f=(u,v).f + c_f(p)
 else: (u,v).f=(u,v).f - c_f(p)
Edmonds-Karp

Lemma 26.7
Shortest path in G_f is non-decreasing

Theorem 26.8
Number of flow augmentations by Edmonds-Karp is $O(|V||E|)$
So, total running time: $O(|V||E|^2)$
Ford-Fulkerson

(f \uparrow f')(u,v) = \text{flow } f \text{ augmented by } f'

(f \uparrow f')(u,v) = f(u,v) + f'(u,v) - f'(v,u)

Lemma 26.1: Let f be the flow in G, and f' be a flow in G_f, then (f \uparrow f') is a flow in G with total amount:

|f \uparrow f'| = |f| + |f'|

Proof: pages 718-719
Ford-Fulkerson

For some path p:
$c_f(p) = \min(c_f(u,v) : (u,v) \text{ on } p)$
\(^\wedge\wedge\) (capacity of path is smallest edge)

Claim 26.3:
Let $f_p = c_f(p)$, then
$|f \uparrow f_p| = |f| + |f_p|$
Ford-Fulkerson

More bad notation:
\(c(u,v) = \text{capacity of an edge} \)
if \(u \) and \(v \) are single vertexes

\(c(S,T) = \text{capacity across a cut} \)
if \(S \) and \(T \) are sets of vertexes

... Similarly for \(f(u,v) \) and \(f(S,T) \)
Max flow, min cut

Relationship between cuts and flows?
\[c(S,T) = \sum_{u \in S} \sum_{v \in T} c(u,v) \]
\[f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{u} \sum_{v} f(v,u) \]
Max flow, min cut

Relationship between cuts and flows?
\[c(S,T) = \sum_{u \in S} \sum_{v \in T} c(u,v) \]
\[f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{u} \sum_{v} f(v,u) \]

cut capacity \(\geq \) flows across cut
Lemma 26.4
Let (S,T) be any cut, then $f(S,T) = |f|$

Proof:
Page 722
(Kinda long)
Max flow, min cut

Corollary 26.5
Flow is not larger than cut capacity

Proof:

\[|f| = \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{u} \sum_{v} f(v,u) \]
\[\leq \sum_{u \in S} \sum_{v \in T} f(u,v) \]
\[\leq \sum_{u \in S} \sum_{v \in T} c(u,v) \]
\[= c(S,T) \]
Theorem 26.5
All 3 are equivalent:
1. \(f \) is a max flow
2. Residual network has no aug. path
3. \(|f| = c(S,T) \) for some cut \((S,T)\)

Proof: \(= \text{min cut (i.e. bottleneck)} \)
Will show: \(1 \Rightarrow 2, 2 \Rightarrow 3, 3 \Rightarrow 1 \)
f is a max flow => Residual network has no augmenting path

Proof:
Assume there is a path p
$|f \uparrow f_p| = |f| + |f_p| > |f|$, which is a contradiction to $|f|$ being a max flow
Max flow, min cut

Residual network has no aug. path =>
$|f| = c(S,T)$ for some cut (S,T)

Proof:
Let $S =$ all vertices reachable from
s in G_f
u in S, v in T => $f(u,v) = c(u,v)$ else
there would be path in G_f
Max flow, min cut

Also, \(f(v,u) = 0 \) else \(c_f(u,v) > 0 \) and again \(v \) would be reachable from \(s \)

\[
f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_u \sum_v f(v,u)
= \sum_{u \in S} \sum_{v \in T} c(u,v) - \sum_u \sum_v 0
= c(S,T)
\]
Max flow, min cut

\[|f| = c(S, T) \text{ for some cut (}S, T\text{)} \]
\[\Rightarrow f \text{ is a max flow} \]

Proof:
\[|f| \leq c(S, T) \text{ for all cuts (}S, T\text{)} \]

Thus trivially true, as \(|f| \) cannot get larger than \(C(S, T)\)
Matching

Another application of network flow is maximizing (number of) matchings in a bipartite graph

Each node cannot be “used” twice
Matching

Add “super sink” and “super source” (and direct edges source -> sink) capacity = 1 on all edges
Efficient matrix multiplication
Matrix multiplication

If you have square matrices A and B, then $C = A \times B$ is defined as:

$$c_{i,j} = \sum_{k=0}^{n} a_{i,k} \cdot b_{k,j}$$

For:

- $A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$
- $B = \begin{bmatrix} 5 & 4 \\ -5 & 1 \end{bmatrix}$

Then:

- $AB = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 5 & 4 \\ -5 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 4 \\ 5 & 9 \end{bmatrix}$
- $BA = \begin{bmatrix} 5 & 4 \\ -5 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 13 & 4 \\ -3 & 1 \end{bmatrix}$

Takes $O(n^3)$ time
Matrix multiplication

Can we do better?

What is the theoretical lowest running time possible?
Matrix multiplication

Can we do better?
Yes!

What is the theoretical lowest running time possible?

$O(n^2)$, must read every value at least once
Matrix multiplication

Block matrix multiplication says:

\[
\begin{bmatrix}
A_1 & A_2 \\
A_3 & A_4
\end{bmatrix}
\begin{bmatrix}
B_1 & B_2 \\
B_3 & B_4
\end{bmatrix}
= \begin{bmatrix}
C_1 & C_2 \\
C_3 & C_4
\end{bmatrix}
\]

Thus \(C_1 = A_1 \times B_1 + A_2 \times B_3 \),

We can use this fact to make a recursive definition
Matrix multiplication

Divide & conquer algorithm:
Mult(A,B)
If |A| == 1, return A*B (scalar)
else... divide A&B into 4 equal parts
 C1 = Mult(A1,B1) + Mult(A2,B3)
 C2 = Mult(A1,B2) + Mult(A2,B4)
 C3 = Mult(A3,B1) + Mult(A4,B3)
 C4 = Mult(A3,B2) + Mult(A4,B4)
Matrix multiplication

Running time:
Base case is $O(1)$
Recursive part needs to add two $\frac{n}{4} \times \frac{n}{4}$ matrices, so $O(n^2)$
8 recursive calls, each size $\frac{n}{2}$

$T(n) = 8 \cdot T(\frac{n}{2}) + O(n^2)$
$T(n) = O(n^{\log_2 8}) = O(n^3)$
Strassen's method

Although the simple divide & conquer did not improve running time...

Can eliminate one recursive call to get $O(n^{\log_2 7})$ with fancy math

Has a much larger constant factor, so not useful unless matrix big
**Step 1: compute some S's (just 'cause!)

<table>
<thead>
<tr>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>S7</th>
<th>S8</th>
<th>S9</th>
<th>S10</th>
</tr>
</thead>
</table>
Step 2: compute some P's (7 < 8)
P1 = A1 * S1
P2 = S2 * B4
P3 = S3 * B1
P4 = A4 * S4
P5 = S5 * S6
P6 = S7 * S8
P7 = S9 * S10
Strassen's method

Step 3: Magic!

\[C_1 = P_5 + P_4 - P_2 + P_6 \]
\[C_2 = P_1 + P_2 \]
\[C_3 = P_3 + P_4 \]
\[C_4 = P_5 + P_1 - P_3 - P_7 \]

(Book works out algebra for you)
Strassen's method

In practice, you should never use this on a matrix smaller than 16x16

The break-point is debatable, but Strassen's is better if over 100x100

Theoretical methods exist to reduce to $O(n^{2.3728639})$, but not practical at all
Fast Fourier Transform

The FFT is a very nice algorithm (ranks up there with bucket sort)

It has many uses, but we will use it to solve polynomial multiplication

Naive approach takes $O(n^2)$ time (i.e. FOIL)
Fast Fourier Transform

Assume we have polynomials:

\[A(x) = \sum_{j=0}^{n} a_j \cdot x^j, \quad B(x) = \sum_{j=0}^{n} b_j \cdot x^j \]

\[C(x) = A(x) \ast B(x) \]

\[C(x) = \sum_{j=0}^{2n} c_j x^j \quad \text{with} \quad c_j = \sum_{k} a_k \cdot b_{j-k} \]

\(O(n) \) per \(c_j \), up to \(2n \) \(c_j \)'s = \(O(n^2) \)
Fast Fourier Transform

Rather than directly computing $C(x)$, map to a different representation

$$A(x) = (x_0, y_0), (x_1, y_1), \ldots (x_n, y_n)$$

Theorem 30.1: If $x_i \neq x_j$ for all $i \neq j$, then above gives a unique polynomial
Proof: (direct)
Represent in matrix form:

\[
\begin{bmatrix}
1 & x_0 & x_0^2 & \ldots & x_0^n \\
1 & x_1 & x_1^2 & \ldots & x_1^n \\
& & & & \\
1 & x_n & x_n^2 & \ldots & x_n^n
\end{bmatrix}
\begin{bmatrix}
a_0 \\
a_1 \\
\vdots \\
a_n
\end{bmatrix}
=
\begin{bmatrix}
y_0 \\
y_1 \\
\vdots \\
y_n
\end{bmatrix}
\]

The left matrix is invertible, done
Q: Why bother with point-values?
A: We can do $A(x) \times B(x)$ in $O(n)$ in this space.

Namely, $(x_i, cy_i) = (x_i, ay_i \times by_i)$

Need to get to point-value and back to coefficients in less than $O(n^2)$
Fast Fourier Transform

Coming soon! (next time)