
  

Network Flow
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Ford-Fulkerson

What is a residual graph?

Forward edges = capacity left
Back edges = flow
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Original Residual



  

Ford-Fulkerson

Idea: Find a way to add some flow,
modify graph to show this flow
reserved... repeat.
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Ford-Fulkerson

Ford-Fulkerson(G, s, t)
initialize network flow to 0
while (exists path from s to t)

augment flow, f, in G along path
return f

(Note: “augment flow” means add
this flow to network)
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Ford-Fulkerson

cut
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Ford-Fulkerson

Subscript “f” denotes residual (or 
modified graph)
G

f
 = residual graph 

E
f
 = residual edges

c
f
 = residual capacity

c
f
(u,v) = c(u,v) - f(u,v)

c
f
(v,u) = f(u,v)
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“forward edge”
capacity - flow

“back edge”
just flow



  

Ford-Fulkerson

Ford-Fulkerson(G, s, t)
for: each edge (u,v) in G.E: (u,v).f=0
while: exists path from s to t in G

f

find c
f
(p) // minimum edge cap. on path

for: each edge (u,v) in p
if(u,v) in E: (u,v).f=(u,v).f + c

f
(p)

else: (v,u).f=(v,u).f - c
f
(p)
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Max flow, min cut
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Ford-Fulkerson

Runtime:

How hard is it to find a path?

How many possible paths could
you find?
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Ford-Fulkerson

Runtime:

How hard is it to find a path?
-O(E) (via BFS or DFS)
How many possible paths could
you find?
- |f*| (paths might use only 1 flow)

.... so, O(E |f*|)
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Edmonds-Karp

Ford-Fulkerson(G, s, t)
for: each edge (u,v) in G.E: (u,v).f=0
while: exists path from s to t in G

f

find c
f
(p) // minimum edge cap.

for: each edge (u,v) in p
if(u,v) in E: (u,v).f=(u,v).f + c

f
(p)

else: (u,v).f=(u,v).f - c
f
(p)

exists shortest path (BFS)

11



  

Edmonds-Karp

Lemma 26.7
Shortest path in G

f
 is non-decreasing

Theorem 26.8
Number of flow augmentations by
Edmonds-Karp is O(|V||E|)
So, total running time: O(|V||E|2)
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Ford-Fulkerson

(f ↑ f')(u,v) = flow f augmented by f'
(f ↑ f')(u,v) = f(u,v) + f'(u,v) - f'(v,u)

Lemma 26.1:  Let f be the flow in G,
and f' be a flow in G

f
, then (f ↑ f')

is a flow in G with total amount:
|f ↑ f'| = |f| + |f'|

Proof: pages 718-719
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Ford-Fulkerson

For some path p:
c

f
(p) = min(c

f
(u,v) : (u,v) on p)

^^ (capacity of path is smallest edge)

Claim 26.3:
Let f

p
 = c

f
(p), then

|f ↑ f
p
| = |f| + |f

p
| 
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Ford-Fulkerson

More bad notation:
c(u,v) = capacity of an edge
if u and v are single vertexes

c(S,T) = capacity across a cut
if S and T are sets of vertexes

... Similarly for f(u,v) and f(S,T)
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Max flow, min cut

Relationship between cuts and flows?
c(S,T) = ∑

u in S
∑

v in T
 c(u,v)

f(S,T) = ∑
u in S

∑
v in T

 f(u,v)-∑
u
∑

v
 f(v,u)
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Max flow, min cut

Relationship between cuts and flows?
c(S,T) = ∑

u in S
∑

v in T
 c(u,v)

f(S,T) = ∑
u in S

∑
v in T

 f(u,v)-∑
u
∑

v
 f(v,u)

cut capacity > flows across cut
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Lemma 26.4
Let (S,T) be any cut, then f(S,T) = |f|

Proof:
Page 722
(Kinda long)

Max flow, min cut
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Corollary 26.5
Flow is not larger than cut capacity
Proof:
|f| = ∑

u in S
∑

v in T
 f(u,v)-∑

u
∑

v
 f(v,u)

< ∑
u in S

∑
v in T

 f(u,v)
< ∑

u in S
∑

v in T
 c(u,v)

= c(S,T)

Max flow, min cut
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Theorem 26.5
All 3 are equivalent:
1. f is a max flow
2. Residual network has no aug. path
3. |f| = c(S,T) for some cut (S,T)

Proof:
Will show: 1 => 2, 2=>3, 3=>1

Max flow, min cut
20

maximum network flow
= min cut (i.e. bottlneck)



  

f is a max flow => Residual network 
has no augmenting path

Proof:
Assume there is a path p
|f ↑ f

p
| = |f| + |f

p
| > |f|, which is a 

  contradiction to |f| being a max flow

Max flow, min cut
21



  

Residual network has no aug. path =>
|f| = c(S,T) for some cut (S,T)
Proof:
Let S = all vertices reachable from

s in G
f

u in S, v in T => f(u,v) = c(u,v) else
there would be path in G

f

Max flow, min cut
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Also, f(v,u) = 0 else c
f
(u,v) > 0 and

again v would be reachable from s

f(S,T) =∑
u in S

∑
v in T

 f(u,v)-∑
u
∑

v
 f(v,u)

=∑
u in S

∑
v in T

 c(u,v)-∑
u
∑

v
 0

=c(S,T)

Max flow, min cut
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|f| = c(S,T) for some cut (S,T)
=> f is a max flow

Proof:
|f| < c(S,T) for all cuts (S,T)

Thus trivially true, as |f| cannot get
larger than C(S,T)

Max flow, min cut
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Matching

Another application of network flow
is maximizing (number of)matchings 
in a bipartite graph

Each node cannot be “used” twice
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Matching

Add “super sink” and “super source”
(and direct edges source -> sink)
capacity = 1 on all edges s

t
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Efficient matrix multiplication



  

Matrix multiplication

If you have square matrices A and B,
then C = A*B is defined as:

Takes O(n3) time



  

Matrix multiplication

Can we do better?

What is the theoretical lowest
running time possible?



  

Matrix multiplication

Can we do better?
Yes!

What is the theoretical lowest
running time possible?

O(n2), must read every value at least
once



  

Matrix multiplication

Block matrix multiplication says:

Thus C
1
 = A

1
*B

1
 + A

2
*B

3
,

We can use this fact to make a 
recursive definition



  

Matrix multiplication

Divide&conquer algorithm:
Mult(A,B)
If |A| == 1, return A*B (scalar)
else... divide A&B into 4 equal parts

C1 = Mult(A1,B1) + Mult(A2,B3)
C2 = Mult(A1,B2) + Mult(A2,B4)
C3 = Mult(A3,B1) + Mult(A4,B3)
C4 = Mult(A3,B2) + Mult(A4,B4)



  

Matrix multiplication

Running time:
Base case is O(1)
Recursive part needs to add two

n/4 x n/4 matrices, so O(n2)
8 recursive calls, each size n/2

T(n) = 8 T(n/2) + O(n2)
T(n) = O(nlog2 8) = O(n3)



  

Strassen's method

Although the simple divide&conquer
did not improve running time...

Can eliminate one recursive call to 
get O(nlog2 7) with fancy math

Has a much larger constant factor, so
not useful unless matrix big



  

Strassen's method

Step 1: compute some S's
(just 'cause!)

S1=B2-B4 S6=B1+B4
S2=A1+A2 S7=A2-A4
S3=A3+A4 S8=B3+B4
S4=B3-B1 S9=A1-A3
S5=A1+A4 S10=B1+B2



  

Strassen's method

Step 2: compute some P's (7 < 8)
P1=A1*S1
P2=S2*B4
P3=S3*B1
P4=A4*S4
P5=S5*S6
P6=S7*S8
P7=S9*S10



  

Strassen's method

Step 3: 

C1 = P5 + P4 - P2 + P6
C2 = P1 + P2
C3 = P3 + P4
C4 = P5 + P1 - P3 - P7

(Book works out algebra for you)



  

Strassen's method

In practice, you should never use
this on a matrix smaller than 16x16

The break-point is debatable, but
Strassen's is better if over 100x100

Theoretical methods exist to reduce
to O(n2.3728639), but not practical at all



  

Fast Fourier Transform

The FFT is a very nice algorithm
(ranks up there with bucket sort)

It has many uses, but we will use 
it to solve polynomial multiplication

Naive approach takes O(n2) time
(i.e. FOIL)



  

Fast Fourier Transform

Assume we have polynomials:

C(x) = A(x) * B(x)

O(n) per c
j
, up to 2n c

j
's = O(n2)



  

Fast Fourier Transform

Rather than directly computing C(x),
map to a different representation

A(x) = (x
0
, y

0
), (x

1
, y

1
), ... (x

n
, y

n
)

Theorem 30.1: If x
i
 ≠ x

j
 for all i ≠ j, 

then above gives a unique polynomial 



  

Fast Fourier Transform

Proof: (direct)
Represent in matrix form:
[1 x

0
 x

0
2 ... x

0
n ] [a

0
]     [y

0
]

[1 x
1
 x

1
2 ... x

1
n ] [a

1
] =  [y

1
]

... ... ...
[1 x

n
 x

n
2 ... x

n
n ] [a

n
]     [y

n
]

The left matrix is invertible, done



  

Fast Fourier Transform

Q: Why bother with point-values?
A: We can do A(x) * B(x) in O(n)
in this space

Namely, (x
i
, cy

i
) = (x

i
, ay

i
*by

i
)

Need to get to point-value and back 
to coefficients in less than O(n2)



  

Fast Fourier Transform

Coming soon! (next time)

done


