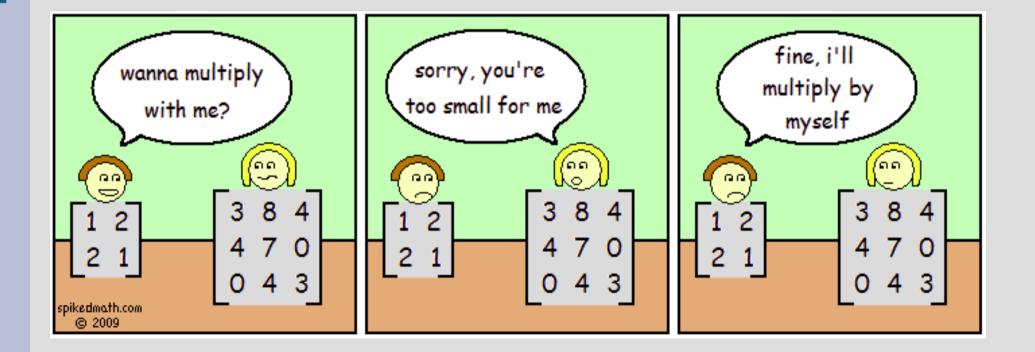
Efficient multiplication

1



If you have square matrices A and B, then C = A*B is defined as:

$$c_{i,j} = \sum_{k=0}^{n} a_{i,k} \cdot b_{k,j}$$

For
$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$
 and $\mathbf{B} = \begin{bmatrix} 5 & 4 \\ -5 & 1 \end{bmatrix}$
 $\mathbf{AB} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 5 & 4 \\ -5 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 4 \\ 5 & 9 \end{bmatrix}$
 $\mathbf{BA} = \begin{bmatrix} 5 & 4 \\ -5 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 13 & 4 \\ -3 & 1 \end{bmatrix}$
Takes O(n³) time

Can we do better?

What is the theoretical lowest running time possible?

Can we do better? Yes!

What is the theoretical lowest running time possible?

O(n²), must read every value at least once

Block matrix multiplication says:

$$\begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 \\ \mathbf{A}_3 & \mathbf{A}_4 \end{bmatrix} \begin{bmatrix} \mathbf{B}_1 & \mathbf{B}_2 \\ \mathbf{B}_3 & \mathbf{B}_4 \end{bmatrix} = \begin{bmatrix} \mathbf{C}_1 & \mathbf{C}_2 \\ \mathbf{C}_3 & \mathbf{C}_4 \end{bmatrix}$$

Thus $C_1 = A_1 * B_1 + A_2 * B_3$,

We can use this fact to make a recursive definition

Divide&conquer algorithm: Mult(A,B) If |A| == 1, return A*B (scalar) else... divide A&B into 4 equal parts C1 = Mult(A1,B1) + Mult(A2,B3)C2 = Mult(A1,B2) + Mult(A2,B4)C3 = Mult(A3,B1) + Mult(A4,B3)C4 = Mult(A3,B2) + Mult(A4,B4)

Running time: Base case is O(1) Recursive part needs to add two n/4 x n/4 matrices, so O(n²) 8 recursive calls, each size n/2

 $T(n) = 8 T(n/2) + O(n^2)$ $T(n) = O(n^{\log 2 8}) = O(n^3)$

Although the simple divide&conquer did not improve running time...

Can eliminate one recursive call to get $O(n^{\log^2 7})$ with fancy math

Has a much larger constant factor, so not useful unless matrix big

Step 1: compute some S's (just 'cause!)

S1=B2-B4 S2=A1+A2 S3=A3+A4 S4=B3-B1 S5=A1+A4 S6=B1+B4 S7=A2-A4 S8=B3+B4 S9=A1-A3 S10=B1+B2

Step 2: compute some P's (7 < 8) P1=A1*S1 P2=S2*B4P3=S3*B1 P4 = A4 * S4P5=S5*S6P6 = S7 * S8P7=S9*S10

Step 3: Magic!

C1 = P5 + P4 - P2 + P6C2 = P1 + P2C3 = P3 + P4

C4 = P5 + P1 - P3 - P7

(Book works out algebra for you)

In practice, you should never use this on a matrix smaller than 16x16

The break-point is debatable, but Strassen's is better if over 100x100

Theoretical methods exist to reduce to O(n^{2.3728639}), but not practical at all

The FFT is a very nice algorithm (ranks up there with bucket sort)

It has many uses, but we will use it to solve polynomial multiplication

Naive approach takes O(n²) time (i.e. FOIL)

Assume we have polynomials: $A(x) = \sum_{j=0}^{n} a_j \cdot x^j, B(x) = \sum_{j=0}^{n} b_j \cdot x^j$

$$C(\mathbf{x}) = A(\mathbf{x}) * B(\mathbf{x})$$
$$C(x) = \sum_{j=0}^{2 \cdot n} c_j x^j \qquad c_j = \sum_k a_k \cdot b_{j-k}$$

O(n) per c_j, up to $2n c_j's = O(n^2)$

Rather than directly computing C(x), map to a different representation

$$A(x) = (x_0, y_0), (x_1, y_1), \dots (x_n, y_n)$$

Theorem 30.1: If $x_i \neq x_j$ for all $i \neq j$, then above gives a unique polynomial

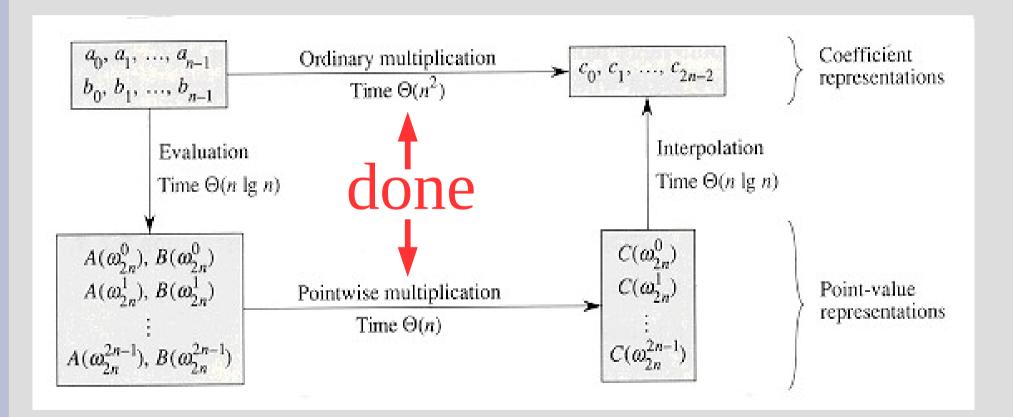
Proof: (direct) Represent in matrix form: $[1 x_0 x_0^2 ... x_0^n] [a_0] [y_0]$ $[1 x_1 x_1^2 ... x_1^n] [a_1] = [y_1]$

 $\begin{bmatrix} 1 & x_n & x_n^2 & \dots & x_n^n \end{bmatrix} \begin{bmatrix} a_n \end{bmatrix} \begin{bmatrix} y_n \end{bmatrix}$ The left matrix is invertible, done

Q: Why bother with point-values? A: We can do A(x) * B(x) in O(n) in this space

Namely, $(x_i, cy_i) = (x_i, ay_i*by_i)$

Need to get to point-value and back to coefficients in less than O(n²)



Coming soon! (next time)