
  

Efficient multiplication
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Matrix multiplication

If you have square matrices A and B,
then C = A*B is defined as:

Takes O(n3) time
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Matrix multiplication

Can we do better?

What is the theoretical lowest
running time possible?
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Matrix multiplication

Can we do better?
Yes!

What is the theoretical lowest
running time possible?

O(n2), must read every value at least
once
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Matrix multiplication

Block matrix multiplication says:

Thus C
1
 = A

1
*B

1
 + A

2
*B

3
,

We can use this fact to make a 
recursive definition

5



  

Matrix multiplication

Divide&conquer algorithm:
Mult(A,B)
If |A| == 1, return A*B (scalar)
else... divide A&B into 4 equal parts

C1 = Mult(A1,B1) + Mult(A2,B3)
C2 = Mult(A1,B2) + Mult(A2,B4)
C3 = Mult(A3,B1) + Mult(A4,B3)
C4 = Mult(A3,B2) + Mult(A4,B4)
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Matrix multiplication

Running time:
Base case is O(1)
Recursive part needs to add two

n/4 x n/4 matrices, so O(n2)
8 recursive calls, each size n/2

T(n) = 8 T(n/2) + O(n2)
T(n) = O(nlog2 8) = O(n3)
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Strassen's method

Although the simple divide&conquer
did not improve running time...

Can eliminate one recursive call to 
get O(nlog2 7) with fancy math

Has a much larger constant factor, so
not useful unless matrix big
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Strassen's method

Step 1: compute some S's
(just 'cause!)

S1=B2-B4 S6=B1+B4
S2=A1+A2 S7=A2-A4
S3=A3+A4 S8=B3+B4
S4=B3-B1 S9=A1-A3
S5=A1+A4 S10=B1+B2
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Strassen's method

Step 2: compute some P's (7 < 8)
P1=A1*S1
P2=S2*B4
P3=S3*B1
P4=A4*S4
P5=S5*S6
P6=S7*S8
P7=S9*S10
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Strassen's method

Step 3: 

C1 = P5 + P4 - P2 + P6
C2 = P1 + P2
C3 = P3 + P4
C4 = P5 + P1 - P3 - P7

(Book works out algebra for you)

11



  

Strassen's method

In practice, you should never use
this on a matrix smaller than 16x16

The break-point is debatable, but
Strassen's is better if over 100x100

Theoretical methods exist to reduce
to O(n2.3728639), but not practical at all
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Fast Fourier Transform

The FFT is a very nice algorithm
(ranks up there with bucket sort)

It has many uses, but we will use 
it to solve polynomial multiplication

Naive approach takes O(n2) time
(i.e. FOIL)
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Fast Fourier Transform

Assume we have polynomials:

C(x) = A(x) * B(x)

O(n) per c
j
, up to 2n c

j
's = O(n2)
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Fast Fourier Transform

Rather than directly computing C(x),
map to a different representation

A(x) = (x
0
, y

0
), (x

1
, y

1
), ... (x

n
, y

n
)

Theorem 30.1: If x
i
 ≠ x

j
 for all i ≠ j, 

then above gives a unique polynomial 
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Fast Fourier Transform

Proof: (direct)
Represent in matrix form:
[1 x

0
 x

0
2 ... x

0
n ] [a

0
]     [y

0
]

[1 x
1
 x

1
2 ... x

1
n ] [a

1
] =  [y

1
]

... ... ...
[1 x

n
 x

n
2 ... x

n
n ] [a

n
]     [y

n
]

The left matrix is invertible, done
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Fast Fourier Transform

Q: Why bother with point-values?
A: We can do A(x) * B(x) in O(n)
in this space

Namely, (x
i
, cy

i
) = (x

i
, ay

i
*by

i
)

Need to get to point-value and back 
to coefficients in less than O(n2)
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Fast Fourier Transform

Coming soon! (next time)

done

18


