
  

Fast Fourier Transform
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Announcements

HW 3 posted tonight (after this)
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Fast Fourier Transform
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Math ground work

Let

Called “nth roots of unity”
We will prove/use: 
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Math ground work

Prove: 
By definition:

Prove:
Again, by definition: 
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Math ground work

Prove:
 
A geometric sum is known to be:

... thus:

k not divisible by n, denominator ≠ 0
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Math ground work

Prove:
 
Direct proof:

(using proof #1)

Picture proof:

Thus, twice the angle
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Fast Fourier Transform

First, we need to efficiently go from
coefficient to point form (n is even)
 

We will use the n roots of unity for xs
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Fast Fourier Transform

We can use the symmetry of the unity
roots to divide & conquer:

First we break even and odd indexed
coefficients into their own polys

9



  

Fast Fourier Transform

We then notice that:

Thus:
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Fast Fourier Transform

By proof #4, computing A() as:

... breaks down the problem into:
two parts, each with half the points

(as squaring nth unity roots gives
n/2 unity roots)
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Fast Fourier Transform

By following this process, we get
the following tree:

A[0] A[1]

A(x)
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Fast Fourier Transform
Recursive-FFT(a)
n = a.length (n assumed power of 2)
if (n == 1), return a
w

n
= e2πi/n, w = 1

a[0] = (a
0
, a

2
, ... a

n-2
), a[1] = (a

1
, a

3
, ... a

n-1
)

y[0] = Recursive-FFT(a[0])
y[1] = Recursive-FFT(a[1])
for k = 0 to n/2 - 1

y
k
 = y[0]

k
 + w * y[1]

k

y
k+(n/2)

 = y[0]
k
 - w * y[1]

k

w = w * w
n

return y
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Fast Fourier Transform

For loop runs O(n) times with O(1)
work inside each loop

2 recursive calls each size n/2, thus...
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Fast Fourier Transform

The first line of loop computes:

Similarly, the second finds:
proof #2
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Fast Fourier Transform

Suppose....
A(x) = (x+1)
B(x) = (x2 - 2x + 3)

The A(x)*B(x) will be degree 3 
(thus 4 coefficients)

So 4 points needed on A(x) and B(x)
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Fast Fourier Transform

To do this we buffer some
“0” coefficients:
A(x) = (x+1) = (0x3 + 0x2 + x + 1)

So coefficients (from power 0)
= [1 1 0 0]

From this we can run FFT

17



  

Fast Fourier Transform

just
did did last time ... =(
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Fast Fourier Transform

If you remember from last time,
we want to solve for y's in:

y V (x's)   a
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Fast Fourier Transform

To solve for a's in previous, we use
the math magic below!

Due to unity root magic

20



  

Fast Fourier Transform

Proof: (that this is V-1)

Using proof #3, if j ≠ k then this is 0
When j = k, we have
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Fast Fourier Transform

Wait, a second... we basically just
solved y = V a, with 

Now we want to solve (knowing y
not a) a = V-1 y, with 

This is a very similar problem!
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Fast Fourier Transform
Recursive-FFT-backwards(y)
n = y.length (n assumed power of 2)
if (n == 1), return y
w

n
= e-2πi/n, w = 1

y[0] = (y
0
, y

2
, ... y

n-2
), y[1] = (y

1
, y

3
, ... y

n-1
)

a[0] = Recursive-FFT-backwards(y[0])
a[1] = Recursive-FFT-backwards(y[1])
for k = 0 to n/2 - 1

a
k
 = a[0]

k
 + w * a[1]

k

a
k+(n/2)

 = a[0]
k
 - w * a[1]

k

w = w * w
n

return a

only added “-” to exponent

swap y and a

after recursion,
divide a by n in main
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Fast Fourier Transform

Breaking down A(x) into A[0](x)
and A[1](x) gives:

If we can get a
i
 in order of the bottom

we can efficiently compute A
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Fast Fourier Transform

Consider the order:
[a

0
, a

4
, a

2
, a

6
, a

1
, a

5
, a

3
, a

7
]

See a pattern?
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Fast Fourier Transform

Consider the order:
[a

0
, a

4
, a

2
, a

6
, a

1
, a

5
, a

3
, a

7
]

See a pattern?
... what if I write it as:
[000,100,010,110,001,101,011,111]

These are just the bits inversed
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Fast Fourier Transform

Thus, if we initially swap the
coefficient matrix in this order...

1.  We can update the value in place
2.  Each level of the tree, we compare

coefficients twice as far as the
previous

28



  

Fast Fourier Transform

Thus we can compute it iteratively
as:

Good for parallel processing?
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Fast Fourier Transform

This works well for a circuit, 
but not so much for multi-core

The processes need to wait until all
previous level done to continue

30



  

Fast Fourier Transform

It might work just as well (or better)
to parallelize the recursive calls

cpu #1 solves cpu #2 solves

Easy ~2x speed up!
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