
  

Fast Fourier Transform

1



  

Announcements

HW 3 posted, due Sunday
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Fast Fourier Transform

Suppose....
A(x) = (x+1)
B(x) = (x2 - 2x + 3)

The A(x)*B(x) will be degree 3 
(thus 4 coefficients)

So 4 points needed on A(x) and B(x)
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Fast Fourier Transform

To do this we buffer some
“0” coefficients:
A(x) = (x+1) = (0x3 + 0x2 + x + 1)

So coefficients (from power 0)
= [1 1 0 0]

From this we can run FFT
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Fast Fourier Transform

A(x) = A[0](x2) + x*A[1](x2)

A(1) = A[0](1) + A[1](1)
A(i) = A[0](-1) + i*A[1](-1)
A(-1) = A[0](1) + -1*A[1](1)
A(-i) = A[0](-1) + -i*A[1](-1)
... so we need to find A[0] and A[1]

at x=1 and x=-1
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Fast Fourier Transform

A[0](x) = coefficients [1 0] = 1 + 0*x
A[0](x) = A[0][0](x2) + x*A[0][1](x2)

A[0][0](x) = coefficients [1]
... so A[0][0](x) = 1 (... an easy poly)

Likewise A[0][1](x) = 0
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Fast Fourier Transform

A[0](x) = A[0][0](x2) + x*A[0][1](x2)
A[0][0](x) = 1 
A[0][1](x) = 0

A[0](1) = A[0][0](12) + 1*A[0][1](12)
= 1 + 1*0 = 1

A[0](-1)= A[0][0]((-1)2) + -1*A[0][1]((-1)2)
= 1 + -1*0 = 1
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Fast Fourier Transform

A[1](x) = coeffecients [1 0] = 1 + 0*x

... this is identical to A[0](x), 
so we repeat this and get:

A[1](1) = 1
A[1](-1) = 1
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Fast Fourier Transform

A(1) = A[0](1) + A[1](1)
= 1 + 1 = 2

A(i) = A[0](-1) + i*A[1](-1)
= 1 + i*1

A(-1) = A[0](1) + -1*A[1](1)
= 1 + -1*1 = 0

A(-i) = A[0](-1) + -i*A[1](-1)
= 1 + -i * 1 = 1-i
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Fast Fourier Transform

Thus A(x) = 1+x in the point-value
representation is:
(1, 2)
(i, 1+i)
(-1, 0)
(-i, 1 - i)

Can verify by plugging in for x
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Fast Fourier Transform

Now we do the same thing for B(x)...
B(x) = 0*x3 + (x2 - 2x + 3)

= coefficients [3 -2 1 0]

B(x) = B[0](x2) + x*B[1](x2)  

B[0](x) = coef [3 1] = 3 + x
B[1](x) = coef [-2 0] = -2
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Fast Fourier Transform

B[0](x) = coef [3 1] = 3 + x
B[0](x) = B[0][0](x2) + x*B[0][1](x2)

B[0][0](x) = coef [3] = 3  (for any x)
B[0][1](x) = coef [1] = 1

Evaluate B[0](x) at 2 points as 2 coef,
so we use                , so 1 and -1
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Fast Fourier Transform

B[0](x) = B[0][0](x2) + x*B[0][1](x2)
B[0][0](x) = 3
B[0][1](x) = 1

B[0](1) = B[0][0](12) + 1*B[0][1](12)
= 3 + 1*1 = 4

B[0](-1)= B[0][0]((-1)2) + -1*B[0][1]((-1)2)
= 3 * -1*1 = 2
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Fast Fourier Transform

B[1](x) = B[1][0](x2) + x*B[1][1](x2)
B[1](x) = coef [-2 0]
B[1][0](x) = -2 = coef [-2]
B[1][1](x) = 0 = coef[0]
B[1](1) = B[1][0](12) + 1*B[1][1](12)

= -2 + 1*0 = -2
B[1](-1)= B[1][0]((-1)2) + -1*B[1][1]((-1)2)

= -2 * -1*0 = -2
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Fast Fourier Transform

B(1) = B[0](1) + 1*B[1](1)
= 4 + -2 = 2

B(i) = B[0](-1) + i*B[1](-1)
= 2 + i*-2 = 2 - 2i

B(-1) = B[0](1) + -1*B[1](1)
= 4 + -1*-2 = 6

B(-i) = B[0](-1) + -i*B[1](-1)
= 2 + -i * -2 = 2 + 2i

15



  

Fast Fourier Transform

B(x) = (x2 - 2x + 3) 
Thus B(x) in point-value notation is:
(1, 2)
(i, 2 - 2i)
(-1, 6)
(-i, 2 + 2i) 

16



  

Fast Fourier Transform

A(x) B(x) C(x) 
(1, 2) (1, 2) (1, 2*2)
(i, 1+i) (i, 2 - 2i) (i, (i+1)(2-2i))
(-1, 0) (-1, 6) (-1, 0*6)
(-i, 1 - i) (-i, 2 + 2i) (-i, (i-i)(2+2i))

... and then we do this whole thing
in reverse...
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Fast Fourier Transform

When going in reverse only
differences:

Rather than going 1 to i to -1 to -i...
Go other way: 1 to -i to -1 to i

Then divide all coefficients by n
at the end
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Prime numbers 
(cryptography)
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RSA Encryption

RSA person A has two keys:
P

A
 = public key

S
A
 = secret key (private key)

The key is that these functions are
inverse, namely for some message M:

P
A
(S

A
(M)) = S

A
(P

A
(M)) = M
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RSA Encryption

Thus, if person B wants to send a
secret message to person A, they do:

1. Encrypt the message using public
key: C = P

A
(M)

2.  Then A can decrypt it using the
secret key: M = S

A
(C)
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RSA Encryption

If A does not share S
A
, no one else 

knows the proper way to decrypt C

P
A
(P

A
(M)) ≠ M

... and ...
S

A
 not easily computable from P

A

(more on this next week)
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RSA Encryption

RSA algorithm:
1. Select two large primes p, q (p≠q)
2. Let n = p * q
3. Let e be: gcd(e, (p - 1)*(q - 1)) = 1
4. Let d be: e*d mod (p-1)*(q-1) = 1
(use “extended euclidean” in book)
5. Public key: P = (e, n)
6. Secret key: S = (d, n)
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RSA Encryption

Specifically: 
P

A
(M) = Me mod n

S
A
(C) = Cd mod n

A key assumption is that M < n, as
we want: M mod n = M
Pick large p,q or encode per byte
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RSA Encryption

Example: p=7, q=11... n = p*q = 77
e=13 (does not need to be prime) as 

gcd(13,(7-1)(11-1))=gcd(13,60) = 1
d=37 as 13*37 mod 60 = 1

If M = 20 (a byte), then C =
2013 mod 77 = 69
C = 71, 7137 mod 77 = 20 
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RSA Encryption + CRT

Computing large powers can require
a lot of processor power

Can more efficiently get the result
with Chinese remainder theorem:
(backwards)
Have: number mod product
Want: smaller system of equations
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RSA Encryption + CRT

Using CRT:
m1 = Cd mod p-1 mod p   // less compute
m2 = Cd mod q-1 mod q   // much smaller
qI = q-1 mod p

h = qI * (m1 - m2)
m = m2 + h*q
(see: rsa.cpp)
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Primes

RSA (and many other applications)
require large prime numbers

We need to find these efficiently
(not brute force!)

The common methods are actually
probabilistic (no guarantee)
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Primes

First, are there actually large primes?

Density of primes around x is about
1/ln(x)  (i.e. 3 per 100 when x=1010)
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Prime finding

To find them, we just make a smart
guess then check if it really is prime

Smart guess:
last digit not: 2, 4, 5, 6, 8 or 0

This eliminates 60% of numbers!
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Prime finding

Both of these methods use Fermat's
theorem, for a prime p:

So we simply check if:
2p-1 mod p == 1

If this is, probably prime
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Prime finding

This simplistic method works
surprisingly well:

Error rate less than 0.2%
(if around 512 bit range, 1 in 1020)

Has two major issues:
1. More accurate for large numbers
2. Carmichael numbers(e.g. 561, rare)
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Prime finding

Computation time also goes up
with number size

Carmichael numbers are composite, 
but have: ap-1 mod p = 1 for all a

These are quite rare though
(only 255 less than 100,000,000)
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Miller-Rabin primality test

Again, we will basically test Fermat's
theorem but with a twist

We let: n-1 = u * 2t, for some u and t

Then compute: 
As:
(more efficient, as we can square it)
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Miller-Rabin primality test
Witness(a, n)
find (t,u) such that t>1 and n-1=u*2t

x
0
 = au mod n

for i = 1 to t
x

i
 =x2

i-1
 mod n

if x
i
 == 1 and x

i-1
 ≠ 1 and x

i-1
 ≠ n-1

return true
if x

i
 ≠ 1

return true
return false
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Miller-Rabin primality test

If Witness returns true, the number
is composite

If Witness returns false, there is a
50% probability that it is a prime

Thus testing “s” different values of 
“a” (range 0 to n-1) gives error 2-s
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Composites

To find composites of n takes (we
think) O(sqrt(n))

This is the same asymptotic running
time as brute force

(i.e. n%2 ==0, n%3==0, ...) 
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Composites

Many security systems depend on the fact that 
factoring nubmers is (we think) a hard problem

In RSA, if you could factor n into p and q, 
anyone can get private key

However, no one has been able to prove that 
this is hard
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Composites

The book does give an algorithm
to compute composites

Similar to security hashing:
(finding hash collision)

Still O(sqrt(n))
(smaller coefficient) 
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