

Announcements

HW 3 posted, due Sunday

Suppose.... A(x) = (x+1) $B(x) = (x^2 - 2x + 3)$

The A(x)*B(x) will be degree 3 (thus 4 coefficients)

So 4 points needed on A(x) and B(x)

To do this we buffer some "0" coefficients: $A(x) = (x+1) = (0x^3 + 0x^2 + x + 1)$

So coefficients (from power 0) = [1 1 0 0]

From this we can run FFT

 $A(x) = A^{[0]}(x^2) + x^* A^{[1]}(x^2)$

 $A(1) = A^{[0]}(1) + A^{[1]}(1)$ $A(i) = A^{[0]}(-1) + i A^{[1]}(-1)$ $A(-1) = A^{[0]}(1) + -1*A^{[1]}(1)$ $A(-i) = A^{[0]}(-1) + -i*A^{[1]}(-1)$... so we need to find $A^{[0]}$ and $A^{[1]}$ at x=1 and x=-1

$A^{[0]}(x) = \text{coefficients } [1 \ 0] = 1 + 0 * x$ $A^{[0]}(x) = A^{[0][0]}(x^2) + x * A^{[0][1]}(x^2)$

 $A^{[0][0]}(x) = coefficients [1]$... so $A^{[0][0]}(x) = 1$ (... an easy poly)

Likewise $A^{[0][1]}(x) = 0$

$\begin{aligned} A^{[0]}(1) &= A^{[0][0]}(1^2) + 1^* A^{[0][1]}(1^2) \\ &= 1 + 1^* 0 = 1 \\ A^{[0]}(-1) &= A^{[0][0]}((-1)^2) + -1^* A^{[0][1]}((-1)^2) \\ &= 1 + -1^* 0 = 1 \end{aligned}$

$\begin{aligned} A^{[0]}(x) &= A^{[0][0]}(x^2) + x^* A^{[0][1]}(x^2) \\ A^{[0][0]}(x) &= 1 \\ A^{[0][1]}(x) &= 0 \end{aligned}$

Fast Fourier Transform

 $A^{[1]}(x) = coeffectients [1 0] = 1 + 0*x$

... this is identical to A[0](x), so we repeat this and get:

 $A^{[1]}(1) = 1$ $A^{[1]}(-1) = 1$

 $A(1) = A^{[0]}(1) + A^{[1]}(1)$ = 1 + 1 = 2 $A(i) = A^{[0]}(-1) + i A^{[1]}(-1)$ = 1 + i*1 $A(-1) = A^{[0]}(1) + -1*A^{[1]}(1)$ =1 + -1 + 1 = 0 $= A^{[0]}(-1) + -i*A^{[1]}(-1)$ A(-i) = 1 + -i * 1 = 1 - i

9

Thus A(x) = 1+x in the point-value representation is: (1, 2)(i, 1+i) (-1, 0)(-i, 1 - i)

Can verify by plugging in for x

Now we do the same thing for B(x)... $B(x) = 0*x^3 + (x^2 - 2x + 3)$ = coefficients [3 - 2 1 0]

$$B(x) = B^{[0]}(x^2) + x^* B^{[1]}(x^2)$$

 $B^{[0]}(x) = coef [3 1] = 3 + x$ $B^{[1]}(x) = coef [-2 0] = -2$

 $B^{[0]}(x) = \operatorname{coef} [3\ 1] = 3 + x$ $B^{[0]}(x) = B^{[0][0]}(x^2) + x^* B^{[0][1]}(x^2)$

 $B^{[0][0]}(x) = coef [3] = 3$ (for any x) $B^{[0][1]}(x) = coef [1] = 1$

Evaluate B[0](x) at 2 points as 2 coef, so we use w_2^0 and w_2^1 , so 1 and -1

12

$B^{[0]}(1) = B^{[0][0]}(1^2) + 1^* B^{[0][1]}(1^2)$ = 3 + 1*1 = 4 $B^{[0]}(-1) = B^{[0][0]}((-1)^2) + -1^* B^{[0][1]}((-1)^2)$ = 3 * -1*1 = 2

$B^{[0]}(x) = B^{[0][0]}(x^2) + x^*B^{[0][1]}(x^2)$ $B^{[0][0]}(x) = 3$ $B^{[0][1]}(x) = 1$

Fast Fourier Transform

$B^{[1]}(x) = B^{[1][0]}(x^2) + x^* B^{[1][1]}(x^2)$ $B^{[1]}(x) = coef[-2 0]$ $B^{[1][0]}(x) = -2 = coef[-2]$ $B^{[1][1]}(x) = 0 = coef[0]$ $B^{[1]}(1) = B^{[1][0]}(1^2) + 1^* B^{[1][1]}(1^2)$ = -2 + 1 * 0 = -2 $B^{[1]}(-1) = B^{[1][0]}((-1)^2) + -1^*B^{[1][1]}((-1)^2)$ = -2 * -1*0 = -2

Fast Fourier Transform

 $B(1) = B^{[0]}(1) + 1 B^{[1]}(1)$ = 4 + -2 = 2 $B(i) = B^{[0]}(-1) + i B^{[1]}(-1)$ $= 2 + i^{*}-2 = 2 - 2i$ $B(-1) = B^{[0]}(1) + -1*B^{[1]}(1)$ =4 + -1*-2 = 6 $= B^{[0]}(-1) + -i B^{[1]}(-1)$ B(-i) = 2 + -i * -2 = 2 + 2i

15

```
B(x) = (x^2 - 2x + 3)
Thus B(x) in point-value notation is:
(1, 2)
(i, 2 - 2i)
(-1, 6)
(-i, 2 + 2i)
```


... and then we do this whole thing in reverse...

When going in reverse only differences:

Rather than going 1 to i to -1 to -i... Go other way: 1 to -i to -1 to i

Then divide all coefficients by n at the end

Prime numbers (cryptography)

- RSA person A has two keys: P_A = public key
 - S_A = secret key (private key)

The key is that these functions are inverse, namely for some message M: $P_A(S_A(M)) = S_A(P_A(M)) = M$

Thus, if person B wants to send a secret message to person A, they do:

- 1. Encrypt the message using public key: $C = P_A(M)$
- 2. Then A can decrypt it using the secret key: $M = S_A(C)$

If A does not share S_A, no one else knows the proper way to decrypt C

 $P_A(P_A(M)) \neq M$

... and ...

S_A not <u>easily computable</u> from P_A (more on this next week)

RSA algorithm: 1. Select two large primes p, q ($p\neq q$) 2. Let n = p * q3. Let e be: gcd(e, (p - 1)*(q - 1)) = 14. Let d be: $e^{d} \mod (p-1)^{q-1} = 1$ (use "extended euclidean" in book) 5. Public key: P = (e, n)6. Secret key: S = (d, n)

Specifically: $P_A(M) = M^e \mod n$ $S_A(C) = C^d \mod n$

A key assumption is that M < n, as we want: M mod n = M Pick large p,q or encode per byte

Example: p=7, q=11... n = p*q = 77e=13 (does not need to be prime) as gcd(13,(7-1)(11-1))=gcd(13,60) = 1 d=37 as 13*37 mod 60 = 1

If M = 20 (a byte), then C = $20^{13} \mod 77 = 69$ C = 71, 71³⁷ mod 77 = 20

RSA Encryption + CRT

Computing large powers can require a lot of processor power

Can more efficiently get the result with Chinese remainder theorem: (backwards) Have: number mod product Want: smaller system of equations

RSA Encryption + CRT

- Using CRT: $m1 = C^{d \mod p-1} \mod p$ // less compute $m2 = C^{d \mod q-1} \mod q$ // much smaller $qI = q^{-1} \mod p$
- h = qI * (m1 m2) m = m2 + h*q (see: rsa.cpp)

27

Primes

RSA (and many other applications) require large prime numbers

We need to find these efficiently (not brute force!)

The common methods are actually probabilistic (no guarantee)

Primes

First, are there actually large primes?

Density of primes around x is about $1/\ln(x)$ (i.e. 3 per 100 when x=10¹⁰)

To find them, we just make a smart guess then check if it really is prime

Smart guess: last digit not: 2, 4, 5, 6, 8 or 0

This eliminates 60% of numbers!

Both of these methods use Fermat's theorem, for a prime p:

$$a^{p-1} \mod p = 1, \, \forall a \in \mathbb{Z}$$

So we simply check if: $2^{p-1} \mod p == 1$

If this is, probably prime

This simplistic method works surprisingly well: Error rate less than 0.2% (if around 512 bit range, 1 in 10²⁰)

Has two major issues:

More accurate for large numbers
 Carmichael numbers(e.g. 561, rare)

32

Computation time also goes up with number size

Carmichael numbers are composite, but have: $a^{p-1} \mod p = 1$ for all a

These are quite rare though (only 255 less than 100,000,000)

Miller-Rabin primality test

34

Again, we will basically test Fermat's theorem but with a twist

We let: $n-1 = u * 2^t$, for some u and t

Then compute: $a^{n-1} \mod n == 1$ As: $a^{u \cdot 2^t} \mod n == 1$ (more efficient, as we can square it)

Miller-Rabin primality test

Witness(a, n) find (t,u) such that t ≥ 1 and n-1=u*2^t $x_0 = a^u \mod n$ for i = 1 to t $x_{i} = x_{i-1}^{2} \mod n$ if $x_i == 1$ and $x_{i-1} \neq 1$ and $x_{i-1} \neq n-1$ return true if $x_i \neq 1$ return true return false

35

Miller-Rabin primality test

36

If Witness returns true, the number is composite

If Witness returns false, there is a 50% probability that it is a prime

Thus testing "s" different values of "a" (range 0 to n-1) gives error 2^{-s}

Composites

To find composites of n takes (we think) O(sqrt(n))

This is the same asymptotic running time as brute force

(i.e. n%2 ==0, n%3==0, ...)

Composites

Many security systems depend on the fact that factoring nubmers is (we think) a hard problem

In RSA, if you could factor n into p and q, anyone can get private key

However, no one has been able to prove that this is hard

Composites

The book does give an algorithm to compute composites

Similar to security hashing: (finding hash collision)

Still O(sqrt(n))
(smaller coefficient)

