

Fast Fourier Transform

1

Announcements

HW 3 posted, due Sunday

22

Fast Fourier Transform

Suppose....
A(x) = (x+1)
B(x) = (x2 - 2x + 3)

The A(x)*B(x) will be degree 3
(thus 4 coefficients)

So 4 points needed on A(x) and B(x)

3

Fast Fourier Transform

To do this we buffer some
“0” coefficients:
A(x) = (x+1) = (0x3 + 0x2 + x + 1)

So coefficients (from power 0)
= [1 1 0 0]

From this we can run FFT

4

Fast Fourier Transform

A(x) = A[0](x2) + x*A[1](x2)

A(1) = A[0](1) + A1
A(i) = A[0](-1) + i*A[1](-1)
A(-1) = A[0](1) + -1*A1
A(-i) = A[0](-1) + -i*A[1](-1)
... so we need to find A[0] and A[1]

at x=1 and x=-1

5

Fast Fourier Transform

A[0](x) = coefficients [1 0] = 1 + 0*x
A[0](x) = A[0][0](x2) + x*A[0][1](x2)

A[0][0](x) = coefficients [1]
... so A[0][0](x) = 1 (... an easy poly)

Likewise A[0][1](x) = 0

6

Fast Fourier Transform

A[0](x) = A[0][0](x2) + x*A[0][1](x2)
A[0][0](x) = 1
A[0][1](x) = 0

A[0](1) = A[0][0](12) + 1*A[0][1](12)
= 1 + 1*0 = 1

A[0](-1)= A[0][0]((-1)2) + -1*A[0][1]((-1)2)
= 1 + -1*0 = 1

7

Fast Fourier Transform

A[1](x) = coeffecients [1 0] = 1 + 0*x

... this is identical to A[0](x),
so we repeat this and get:

A1 = 1
A[1](-1) = 1

8

Fast Fourier Transform

A(1) = A[0](1) + A1
= 1 + 1 = 2

A(i) = A[0](-1) + i*A[1](-1)
= 1 + i*1

A(-1) = A[0](1) + -1*A1
= 1 + -1*1 = 0

A(-i) = A[0](-1) + -i*A[1](-1)
= 1 + -i * 1 = 1-i

9

Fast Fourier Transform

Thus A(x) = 1+x in the point-value
representation is:
(1, 2)
(i, 1+i)
(-1, 0)
(-i, 1 - i)

Can verify by plugging in for x

10

Fast Fourier Transform

Now we do the same thing for B(x)...
B(x) = 0*x3 + (x2 - 2x + 3)

= coefficients [3 -2 1 0]

B(x) = B[0](x2) + x*B[1](x2)

B[0](x) = coef [3 1] = 3 + x
B[1](x) = coef [-2 0] = -2

11

Fast Fourier Transform

B[0](x) = coef [3 1] = 3 + x
B[0](x) = B[0][0](x2) + x*B[0][1](x2)

B[0][0](x) = coef [3] = 3 (for any x)
B[0][1](x) = coef [1] = 1

Evaluate B[0](x) at 2 points as 2 coef,
so we use , so 1 and -1

12

Fast Fourier Transform

B[0](x) = B[0][0](x2) + x*B[0][1](x2)
B[0][0](x) = 3
B[0][1](x) = 1

B[0](1) = B[0][0](12) + 1*B[0][1](12)
= 3 + 1*1 = 4

B[0](-1)= B[0][0]((-1)2) + -1*B[0][1]((-1)2)
= 3 * -1*1 = 2

13

Fast Fourier Transform

B[1](x) = B[1][0](x2) + x*B[1][1](x2)
B[1](x) = coef [-2 0]
B[1][0](x) = -2 = coef [-2]
B[1][1](x) = 0 = coef[0]
B1 = B[1][0](12) + 1*B[1][1](12)

= -2 + 1*0 = -2
B[1](-1)= B[1][0]((-1)2) + -1*B[1][1]((-1)2)

= -2 * -1*0 = -2

14

Fast Fourier Transform

B(1) = B[0](1) + 1*B1
= 4 + -2 = 2

B(i) = B[0](-1) + i*B[1](-1)
= 2 + i*-2 = 2 - 2i

B(-1) = B[0](1) + -1*B1
= 4 + -1*-2 = 6

B(-i) = B[0](-1) + -i*B[1](-1)
= 2 + -i * -2 = 2 + 2i

15

Fast Fourier Transform

B(x) = (x2 - 2x + 3)
Thus B(x) in point-value notation is:
(1, 2)
(i, 2 - 2i)
(-1, 6)
(-i, 2 + 2i)

16

Fast Fourier Transform

A(x) B(x) C(x)
(1, 2) (1, 2) (1, 2*2)
(i, 1+i) (i, 2 - 2i) (i, (i+1)(2-2i))
(-1, 0) (-1, 6) (-1, 0*6)
(-i, 1 - i) (-i, 2 + 2i) (-i, (i-i)(2+2i))

... and then we do this whole thing
in reverse...

17

Fast Fourier Transform

When going in reverse only
differences:

Rather than going 1 to i to -1 to -i...
Go other way: 1 to -i to -1 to i

Then divide all coefficients by n
at the end

18

Prime numbers
(cryptography)

19

RSA Encryption

RSA person A has two keys:
P

A
 = public key

S
A
 = secret key (private key)

The key is that these functions are
inverse, namely for some message M:

P
A
(S

A
(M)) = S

A
(P

A
(M)) = M

20

RSA Encryption

Thus, if person B wants to send a
secret message to person A, they do:

1. Encrypt the message using public
key: C = P

A
(M)

2. Then A can decrypt it using the
secret key: M = S

A
(C)

21

RSA Encryption

If A does not share S
A
, no one else

knows the proper way to decrypt C

P
A
(P

A
(M)) ≠ M

... and ...
S

A
 not easily computable from P

A

(more on this next week)

22

RSA Encryption

RSA algorithm:
1. Select two large primes p, q (p≠q)
2. Let n = p * q
3. Let e be: gcd(e, (p - 1)*(q - 1)) = 1
4. Let d be: e*d mod (p-1)*(q-1) = 1
(use “extended euclidean” in book)
5. Public key: P = (e, n)
6. Secret key: S = (d, n)

23

RSA Encryption

Specifically:
P

A
(M) = Me mod n

S
A
(C) = Cd mod n

A key assumption is that M < n, as
we want: M mod n = M
Pick large p,q or encode per byte

24

RSA Encryption

Example: p=7, q=11... n = p*q = 77
e=13 (does not need to be prime) as

gcd(13,(7-1)(11-1))=gcd(13,60) = 1
d=37 as 13*37 mod 60 = 1

If M = 20 (a byte), then C =
2013 mod 77 = 69
C = 71, 7137 mod 77 = 20

25

RSA Encryption + CRT

Computing large powers can require
a lot of processor power

Can more efficiently get the result
with Chinese remainder theorem:
(backwards)
Have: number mod product
Want: smaller system of equations

26

RSA Encryption + CRT

Using CRT:
m1 = Cd mod p-1 mod p // less compute
m2 = Cd mod q-1 mod q // much smaller
qI = q-1 mod p

h = qI * (m1 - m2)
m = m2 + h*q
(see: rsa.cpp)

27

Primes

RSA (and many other applications)
require large prime numbers

We need to find these efficiently
(not brute force!)

The common methods are actually
probabilistic (no guarantee)

28

Primes

First, are there actually large primes?

Density of primes around x is about
1/ln(x) (i.e. 3 per 100 when x=1010)

29

Prime finding

To find them, we just make a smart
guess then check if it really is prime

Smart guess:
last digit not: 2, 4, 5, 6, 8 or 0

This eliminates 60% of numbers!

30

Prime finding

Both of these methods use Fermat's
theorem, for a prime p:

So we simply check if:
2p-1 mod p == 1

If this is, probably prime

31

Prime finding

This simplistic method works
surprisingly well:

Error rate less than 0.2%
(if around 512 bit range, 1 in 1020)

Has two major issues:
1. More accurate for large numbers
2. Carmichael numbers(e.g. 561, rare)

32

Prime finding

Computation time also goes up
with number size

Carmichael numbers are composite,
but have: ap-1 mod p = 1 for all a

These are quite rare though
(only 255 less than 100,000,000)

33

Miller-Rabin primality test

Again, we will basically test Fermat's
theorem but with a twist

We let: n-1 = u * 2t, for some u and t

Then compute:
As:
(more efficient, as we can square it)

34

Miller-Rabin primality test
Witness(a, n)
find (t,u) such that t>1 and n-1=u*2t

x
0
 = au mod n

for i = 1 to t
x

i
 =x2

i-1
 mod n

if x
i
 == 1 and x

i-1
 ≠ 1 and x

i-1
 ≠ n-1

return true
if x

i
 ≠ 1

return true
return false

35

Miller-Rabin primality test

If Witness returns true, the number
is composite

If Witness returns false, there is a
50% probability that it is a prime

Thus testing “s” different values of
“a” (range 0 to n-1) gives error 2-s

36

Composites

To find composites of n takes (we
think) O(sqrt(n))

This is the same asymptotic running
time as brute force

(i.e. n%2 ==0, n%3==0, ...)

37

Composites

Many security systems depend on the fact that
factoring nubmers is (we think) a hard problem

In RSA, if you could factor n into p and q,
anyone can get private key

However, no one has been able to prove that
this is hard

38

Composites

The book does give an algorithm
to compute composites

Similar to security hashing:
(finding hash collision)

Still O(sqrt(n))
(smaller coefficient)

3939

