

Prime numbers
(cryptography)

1

GCD

Let d | a mean

Example:
5 | 10, as 10 = 2 * 5

The greatest common divisor
between a and b is:
gcd(a,b) = max x s.t. x | a and x | b

2

GCD

Oddly, another definition of gcd is:

gcd also has properties:
1. gcd(an, bn) = n gcd(a,b)
2. if n | ab and gcd(a,n) = 1, then n | b
3. if gcd(a,p)=1 and gcd(b,p)=1,

then gcd(ab,p) = 1

3

GCD

We can recursively find gcd by:

gcd(a, b)
if b == 0, return a;
else, return gcd(b, a mod b)

a mod b will always decrease,
thus this will terminate

4

Modular linear equations

Suppose we wanted to solve:

a x mod n = b

E.g. 18 x mod 80 = 33

How would you do this?

5

Modular linear equations

Let d = gcd(a, n)
Let x' and y' be integer solutions to:

d = a*x' + n*y'
If d | b, then:

There are d solutions, namely:
for i = 0 to d-1

print x'(b/d) + i(n/d) mod n
else, no solutions

6

Chinese remainder theorem

Let n = n
1
 * n

2
 * ... * n

k
, where n

i
 is

pairwise relatively prime

Then there is a unique solution for x:

x mod n
i
 = a

i

for all i=1, 2, ... k, when x < n

7

Chinese remainder theorem

This is a specific extension of solving
a single equation (mod n)

The “loopy” nature of modulus
comes in handy many places

Some implementations of FFT
use the Chinese remainder theorem

8

Chinese remainder theorem

You can compute this solution as:

Let m
i
 = n/n

i

Then c
i
 = m

i
(m

i
-1 mod n

i
)

Then x = ∑c
i
*a

i
 mod n

(m
i
-1 is such that m

i
*m

i
-1 mod n

i
 = 1)

mod n
i
 for finding m

i
-1

not a math op

9

Chinese remainder theorem

Example, solve for x:
x mod 5 = 2 (a

1
)

x mod 11 = 7 (a
2
)

n = 55, m
1
 = 11, m

2
 = 5

m
1
-1= 1, m

2
-1 = 9

c
1
=11*1=11, c

2
=5*9=45

x = 11*2 + 7*45 mod 55=337%55=7

10

CRT vs. interpolation

There is actually some similarity
between the CRT and interpolation

Both of them find a partial answer
that simply modifies one sub-problem

Then combines these partial answers

11

CRT vs. interpolation

Find polynomial given 3 points:
(0,1), (1, 4), (2, 4)

(x-0)(x-1) is zero on x=0,1 (first 2)
2(x-0)(x-1) is correct for last (x=2)

Combine by adding up a polynomial
for each point (not effecting others)

12

CRT vs. interpolation

Solve k systems of linear modular equations
x mod n

1
 = a

1
, x mod n

2
 = a

2
, ... x mod n

k
 = a

k

If n = n
1
*n

2
*...*n

k
, and m

i
 = n/n

i
, then m

i
 has no

effect on x mod n
j
for any j except i (as n

j
 | m

i
)

So we find c
i
 such that c

i
m

i
 = x (mod n

i
)

Then add these terms together (not effect other)

13

RSA Encryption

RSA person A has two keys:
P

A
 = public key

S
A
 = secret key (private key)

The key is that these functions are
inverse, namely for some message M:

P
A
(S

A
(M)) = S

A
(P

A
(M)) = M

14

RSA Encryption

Thus, if person B wants to send a
secret message to person A, they do:

1. Encrypt the message using public
key: C = P

A
(M)

2. Then A can decrypt it using the
secret key: M = S

A
(C)

15

RSA Encryption

If A does not share S
A
, no one else

knows the proper way to decrypt C

P
A
(P

A
(M)) ≠ M

... and ...
S

A
 not easily computable from P

A

16

RSA Encryption

RSA algorithm:
1. Select two large primes p, q (p≠q)
2. Let n = p * q
3. Let e be: gcd(e, (p - 1)*(q - 1)) = 1
4. Let d be: e*d mod (p-1)*(q-1) = 1
(use “extended euclidean” in book)
5. Public key: P = (e, n)
6. Secret key: S = (d, n)

17

RSA Encryption

Specifically:
P

A
(M) = Me mod n

S
A
(C) = Cd mod n

A key assumption is that M < n, as
we want: M mod n = M
Pick large p,q or encode per byte

18

RSA Encryption

Example: p=7, q=11... n = p*q = 77
e=13 (does not need to be prime) as

gcd(13,(7-1)(11-1))=gcd(13,60) = 1
d=37 as 13*37 mod 60 = 1

If M = 20, then...
C = 2013 mod 77 = 69
C = 69, 6937 mod 77 = 20

19

RSA Encryption + CRT

Computing large powers can require
a lot of processor power

Can more efficiently get the result
with Chinese remainder theorem:
(backwards)
Have: number mod product
Want: smaller system of equations

20

RSA Encryption + CRT

Using CRT:
m1 = Cd mod p-1 mod p // less compute
m2 = Cd mod q-1 mod q // much smaller
qI = q-1 mod p

h = qI * (m1 - m2)
m = m2 + h*q
(see: rsa.cpp)

21

Primes

RSA (and many other applications)
require large prime numbers

We need to find these efficiently
(not brute force!)

The common methods are actually
probabilistic (no guarantee)

22

Primes

First, are there actually large primes?

Density of primes around x is about
1/ln(x) (i.e. 3 per 100 when x=1010)

23

Prime finding

To find them, we just make a smart
guess then check if it really is prime

Smart guess:
last digit not: 2, 4, 5, 6, 8 or 0

This eliminates 60% of numbers!

24

Prime finding

Both of these methods use Fermat's
theorem, for a prime p:

So we simply check if:
2p-1 mod p == 1

If this is, probably prime

25

Prime finding

This simplistic method works
surprisingly well:

Error rate less than 0.2%
(if around 512 bit range, 1 in 1020)

Has two major issues:
1. More accurate for large numbers
2. Carmichael numbers(e.g. 561, rare)

26

Prime finding

Computation time also goes up
with number size

Carmichael numbers are composite,
but have: ap-1 mod p = 1 for all a

These are quite rare though
(only 255 less than 100,000,000)

27

Miller-Rabin primality test

Again, we will basically test Fermat's
theorem but with a twist

We let: n-1 = u * 2t, for some u and t

Then compute:
As:
(more efficient, as we can square it)

28

Miller-Rabin primality test
Witness(a, n)
find (t,u) such that t>1 and n-1=u*2t

x
0
 = au mod n

for i = 1 to t
x

i
 =x2

i-1
 mod n

if x
i
 == 1 and x

i-1
 ≠ 1 and x

i-1
 ≠ n-1

return true
if x

i
 ≠ 1

return true
return false

29

Miller-Rabin primality test

If Witness returns true, the number
is composite

If Witness returns false, there is a
50% probability that it is a prime

Thus testing “s” different values of
“a” (range 0 to n-1) gives error 2-s

30

Composites

To find composites of n takes (we
think) O(sqrt(n))

This is the same asymptotic running
time as brute force

(i.e. n%2 ==0, n%3==0, ...)

31

Composites

Many security systems depend on the fact that
factoring numbers is (we think) a hard problem

In RSA, if you could factor n into p and q,
anyone can get private key

However, no one has been able to prove that
this is hard

32

Composites

The book does give an algorithm
to compute composites

Similar to security hashing:
(finding hash collision)

Still O(sqrt(n))
(smaller coefficient)

33

