
  

Prime numbers 
(cryptography)
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GCD

Let d | a mean

Example:
5 | 10, as 10 = 2 * 5

The greatest common divisor 
between a and b is:
gcd(a,b) = max x s.t. x | a and x | b 
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GCD

Oddly, another definition of gcd is:

gcd also has properties:
1. gcd(an, bn) = n gcd(a,b)
2. if n | ab and gcd(a,n) = 1, then n | b
3. if gcd(a,p)=1 and gcd(b,p)=1, 

then gcd(ab,p) = 1
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GCD

We can recursively find gcd by:

gcd(a, b)
if b == 0, return a;
else, return gcd(b, a mod b)

a mod b will always decrease, 
thus this will terminate
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Modular linear equations

Suppose we wanted to solve:

a x mod n = b

E.g.  18 x mod 80 = 33

How would you do this?
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Modular linear equations

Let d = gcd(a, n)
Let x' and y' be integer solutions to:

d = a*x' + n*y'
If d | b, then:

There are d solutions, namely:
for i = 0 to d-1

print x'(b/d) + i(n/d) mod n
else, no solutions
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Chinese remainder theorem

Let n = n
1
 * n

2
 * ... * n

k
, where n

i
 is

pairwise relatively prime

Then there is a unique solution for x:

x mod n
i
 = a

i
 

for all i=1, 2, ... k, when x < n
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Chinese remainder theorem

This is a specific extension of solving
a single equation (mod n)

The “loopy” nature of modulus
comes in handy many places

Some implementations of FFT
use the Chinese remainder theorem
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Chinese remainder theorem

You can compute this solution as:

Let m
i
 = n/n

i

Then c
i
 = m

i
(m

i
-1 mod n

i
) 

Then x = ∑c
i
*a

i
 mod n

(m
i
-1 is such that m

i
*m

i
-1 mod n

i
 = 1)

mod n
i
 for finding m

i
-1

not a math op
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Chinese remainder theorem

Example, solve for x:
x mod 5 = 2 (a

1
)

x mod 11 = 7 (a
2
)

n = 55, m
1
 = 11, m

2
 = 5

m
1
-1= 1, m

2
-1 = 9

c
1
=11*1=11, c

2
=5*9=45

x = 11*2 + 7*45 mod 55=337%55=7 
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CRT vs. interpolation

There is actually some similarity
between the CRT and interpolation

Both of them find a partial answer
that simply modifies one sub-problem

Then combines these partial answers
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CRT vs. interpolation

Find polynomial given 3 points:
(0,1), (1, 4), (2, 4) 

(x-0)(x-1) is zero on x=0,1 (first 2)
2(x-0)(x-1) is correct for last (x=2)

Combine by adding up a polynomial
for each point (not effecting others)
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CRT vs. interpolation

Solve k systems of linear modular equations
x mod n

1
 = a

1
, x mod n

2
 = a

2
, ... x mod n

k
 = a

k

If n = n
1
*n

2
*...*n

k
, and m

i
 = n/n

i
, then m

i
 has no 

effect on x mod n
j 
for any j except i (as n

j
 | m

i
)

So we find c
i
 such that c

i
m

i
 = x (mod n

i
)

Then add these terms together (not effect other)
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RSA Encryption

RSA person A has two keys:
P

A
 = public key

S
A
 = secret key (private key)

The key is that these functions are
inverse, namely for some message M:

P
A
(S

A
(M)) = S

A
(P

A
(M)) = M

14



  

RSA Encryption

Thus, if person B wants to send a
secret message to person A, they do:

1. Encrypt the message using public
key: C = P

A
(M)

2.  Then A can decrypt it using the
secret key: M = S

A
(C)
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RSA Encryption

If A does not share S
A
, no one else 

knows the proper way to decrypt C

P
A
(P

A
(M)) ≠ M

... and ...
S

A
 not easily computable from P

A
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RSA Encryption

RSA algorithm:
1. Select two large primes p, q (p≠q)
2. Let n = p * q
3. Let e be: gcd(e, (p - 1)*(q - 1)) = 1
4. Let d be: e*d mod (p-1)*(q-1) = 1
(use “extended euclidean” in book)
5. Public key: P = (e, n)
6. Secret key: S = (d, n)
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RSA Encryption

Specifically: 
P

A
(M) = Me mod n

S
A
(C) = Cd mod n

A key assumption is that M < n, as
we want: M mod n = M
Pick large p,q or encode per byte
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RSA Encryption

Example: p=7, q=11... n = p*q = 77
e=13 (does not need to be prime) as 

gcd(13,(7-1)(11-1))=gcd(13,60) = 1
d=37 as 13*37 mod 60 = 1

If M = 20, then...
C = 2013 mod 77 = 69
C = 69, 6937 mod 77 = 20 
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RSA Encryption + CRT

Computing large powers can require
a lot of processor power

Can more efficiently get the result
with Chinese remainder theorem:
(backwards)
Have: number mod product
Want: smaller system of equations
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RSA Encryption + CRT

Using CRT:
m1 = Cd mod p-1 mod p   // less compute
m2 = Cd mod q-1 mod q   // much smaller
qI = q-1 mod p

h = qI * (m1 - m2)
m = m2 + h*q
(see: rsa.cpp)
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Primes

RSA (and many other applications)
require large prime numbers

We need to find these efficiently
(not brute force!)

The common methods are actually
probabilistic (no guarantee)
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Primes

First, are there actually large primes?

Density of primes around x is about
1/ln(x)  (i.e. 3 per 100 when x=1010)
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Prime finding

To find them, we just make a smart
guess then check if it really is prime

Smart guess:
last digit not: 2, 4, 5, 6, 8 or 0

This eliminates 60% of numbers!
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Prime finding

Both of these methods use Fermat's
theorem, for a prime p:

So we simply check if:
2p-1 mod p == 1

If this is, probably prime
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Prime finding

This simplistic method works
surprisingly well:

Error rate less than 0.2%
(if around 512 bit range, 1 in 1020)

Has two major issues:
1. More accurate for large numbers
2. Carmichael numbers(e.g. 561, rare)
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Prime finding

Computation time also goes up
with number size

Carmichael numbers are composite, 
but have: ap-1 mod p = 1 for all a

These are quite rare though
(only 255 less than 100,000,000)
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Miller-Rabin primality test

Again, we will basically test Fermat's
theorem but with a twist

We let: n-1 = u * 2t, for some u and t

Then compute: 
As:
(more efficient, as we can square it)
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Miller-Rabin primality test
Witness(a, n)
find (t,u) such that t>1 and n-1=u*2t

x
0
 = au mod n

for i = 1 to t
x

i
 =x2

i-1
 mod n

if x
i
 == 1 and x

i-1
 ≠ 1 and x

i-1
 ≠ n-1

return true
if x

i
 ≠ 1

return true
return false
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Miller-Rabin primality test

If Witness returns true, the number
is composite

If Witness returns false, there is a
50% probability that it is a prime

Thus testing “s” different values of 
“a” (range 0 to n-1) gives error 2-s
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Composites

To find composites of n takes (we
think) O(sqrt(n))

This is the same asymptotic running
time as brute force

(i.e. n%2 ==0, n%3==0, ...) 
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Composites

Many security systems depend on the fact that 
factoring numbers is (we think) a hard problem

In RSA, if you could factor n into p and q, 
anyone can get private key

However, no one has been able to prove that 
this is hard
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Composites

The book does give an algorithm
to compute composites

Similar to security hashing:
(finding hash collision)

Still O(sqrt(n))
(smaller coefficient) 
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