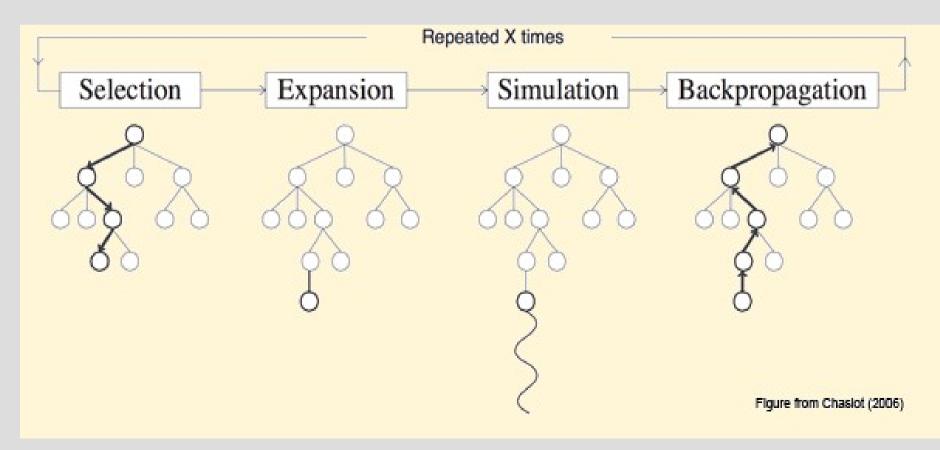
#### Welcome to CSci 4041

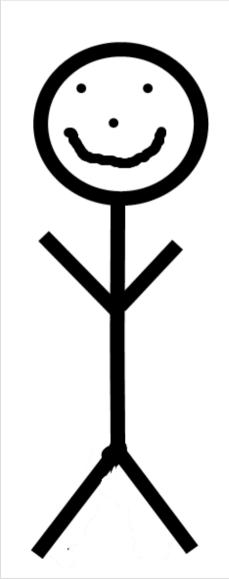
#### Algorithms and Data Structures



# Instructor (me)

#### James Parker Shepherd Labs 391

Primary contact: jparker@cs.umn.edu

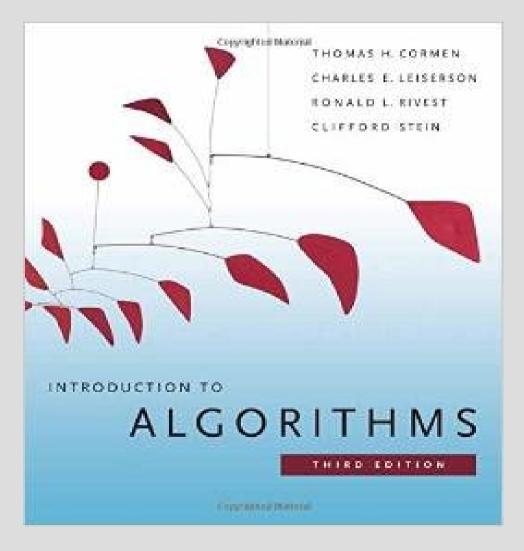


# Teaching Assistant

Pariya Babaie, Jayant Gupta, Song Liu, Anoop Shukla, Nikolaos Stefas, Kshitij Tayal Nitin Varyani **friends** 

## Textbook

Introduction to Algorithms, Cormen et al., 3<sup>rd</sup> edition



#### **Discussion sections**

These will typically reinforce the topics of the week (or exam review)

The TAs may do exercises, so bring something to write on (these exercises will not be graded)

## Class website

#### www.cs.umn.edu/academics/classes Or google "umn.edu csci class"

#### Syllabus, schedule, other goodies

Moodle page will have grades and Possibly homework submission

#### www.cs.umn.edu

| CSci 4041H: Announcements - Mozilla Firefox<br><u>File Edit Vi</u> ew History <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp                       |                                                |           |             |                  |             |                                |                                         |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------|-------------|------------------|-------------|--------------------------------|-----------------------------------------|---|
|                                                                                                                                                  | .cselabs.umn.edu/classes/Fall-2015/csci4041H/  |           |             |                  |             | ☆                              | • Google                                | ٩ |
|                                                                                                                                                  |                                                | Campuses: | Twin Cities | <u>Crookston</u> | Duluth Me   | orris Roches                   | er Other Locations                      | _ |
| UNIVERSITY OF MINNESOTA<br>Driven to Discover                                                                                                    |                                                |           |             | s                | earch U of  | myU<br>M Web Sites             | > One Stop > Search                     |   |
|                                                                                                                                                  |                                                |           | <u>cs</u>   | E Home   C       | SE Director | Give to CSI                    | E Student Dashboard                     |   |
| Home<br>Office Hours                                                                                                                             | CSci 4041H: Algorithms                         | and D     | ata St      | ructi            | ires        |                                |                                         |   |
| Schedule<br>Syllabus                                                                                                                             | Class Announcements                            |           |             |                  |             |                                |                                         |   |
| Moodle (grades)                                                                                                                                  | 09/08/2015     ALL YOUR BASE ARE BELONG TO US. |           |             |                  |             |                                |                                         |   |
| © 2015 Regents of the University of Minnesota. All rights reserved.<br>The University of Minnesota is an equal opportunity educator and employer |                                                |           | Twin Citie  | es Campus:       |             | Transportation<br>ectories Con | Maps & Directions<br>act U of M Privacy |   |

Last modified on September 8, 2015

# Syllabus

# 30% Homework20% Programming assignments25% Midterm (Oct. 23)25% Final (Dec. 18)

(No late homework; must ask for extension 48hr before deadline)

# Programming vote

#### C/C++?

#### Java?

Python?

# Syllabus

Grading scale: 93% A 90% A-87% B+ 83% B 80% B-

77% C+ 73% C 70% C-67% D+ 60% D Below F

# Schedule

Ch. 1, 2, 3: Introduction Ch. 2.1, 2.3, 7, 8: Sequences and Sets Ch. 6, 9, 13, 32: More Sequences and Sets Ch. 22, 23, 24, 25, 26: Graph Algorithms Ch. 33: Geometric Algorithms Ch. 4.2, 30, 31: Algebraic and Numeric Alg. Ch. 34: NP-Completeness

# Syllabus

#### Any questions?

## Course overview

#### Major topics:

- Learn lots of algorithms
- Decide which algorithm is most appropriate
- Find asymptotic runtime and prove an algorithm works (mathy)

#### We assume you can program

This class focuses on improving your ability to make code run faster by picking the correct algorithm

This is a crucial skill for large code

We will do a pretty thorough job of sorting algorithms

After that we will touch interesting or important algorithms

The goal is to expose you to a wide range of ways to solve problems

Quite often there is not a single algorithm that always performs best

Most of the time there are trade-offs: some algorithms are fast, some use more/less memory, some take use parallel computing...

A major point of this class is to tell how scalable algorithms are

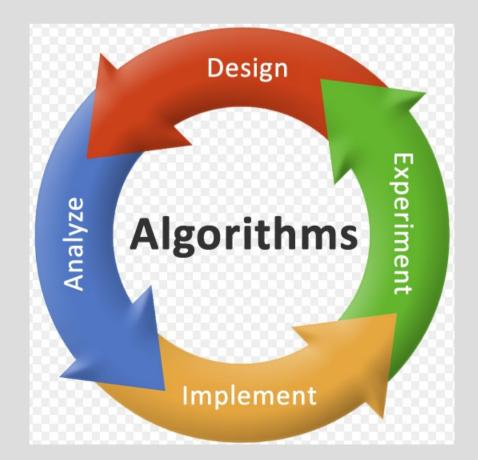
If you have a 2MB input text file and your program runs in 2 min ... what if you input a 5MB file?

#### ... 20 MB file?

In addition to using math to find the speed of algorithms, we will prove algorithms correctly find the answer

This is called the "correctness" of an algorithm (and often will be proof-by-induction)

#### Introduction / Review



#### Moore's Law

Number of transistors double every two years

This trend has slowed a bit, closer to doubling every 2.5 years

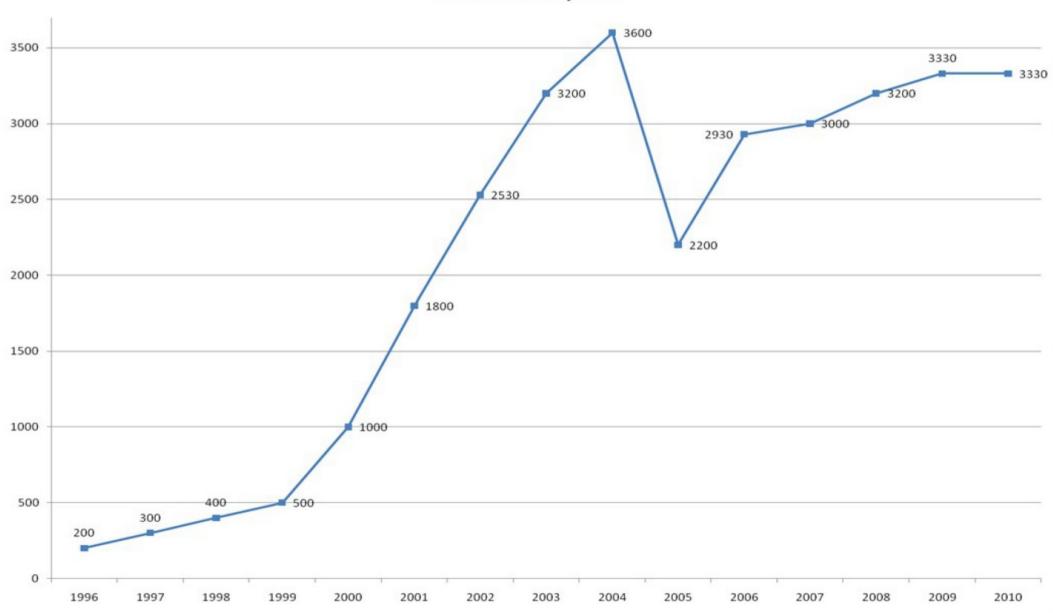
# First computer

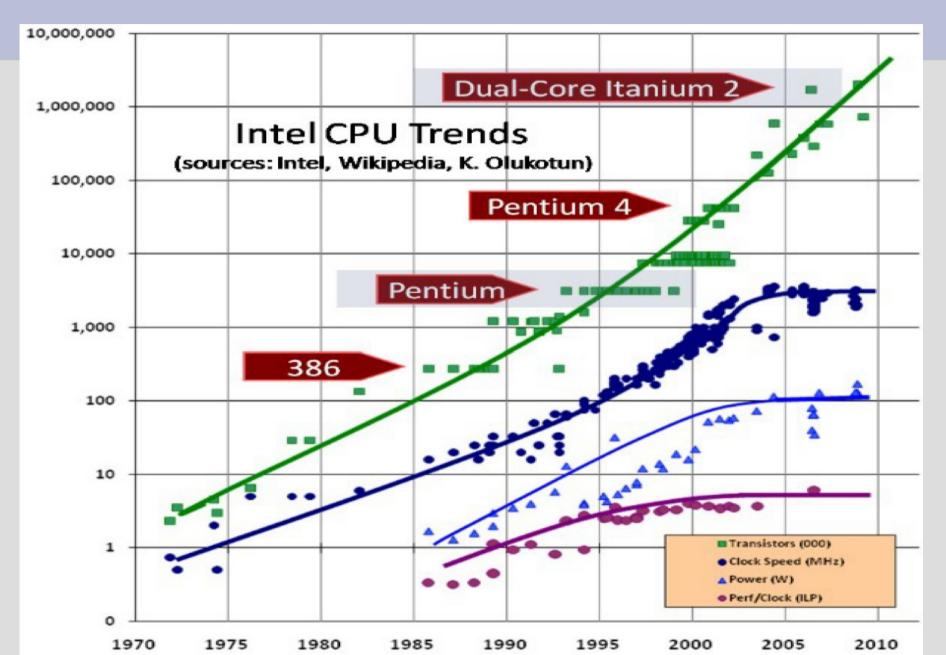
#### Memory: 1 MB

CPU: 2.4 Mhz

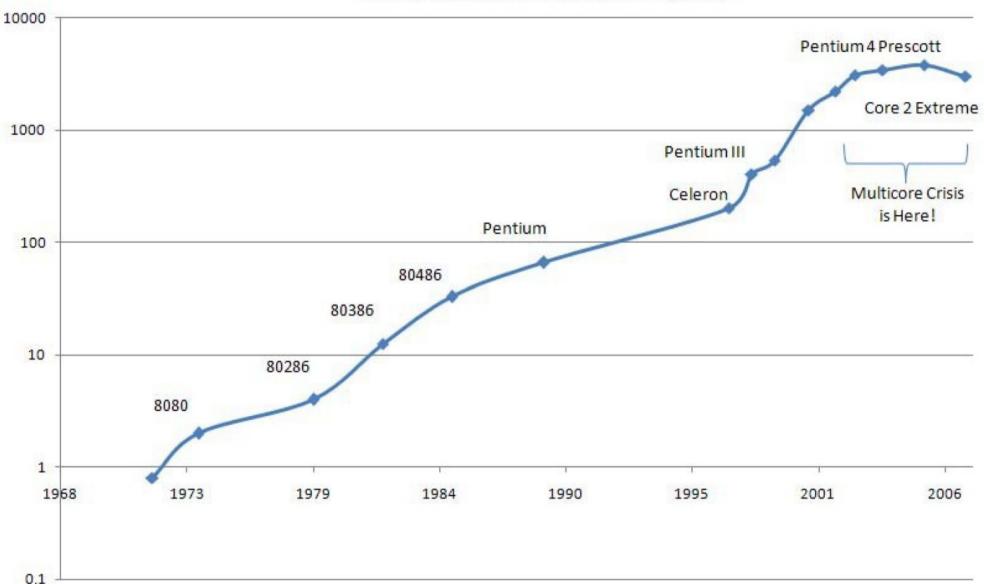


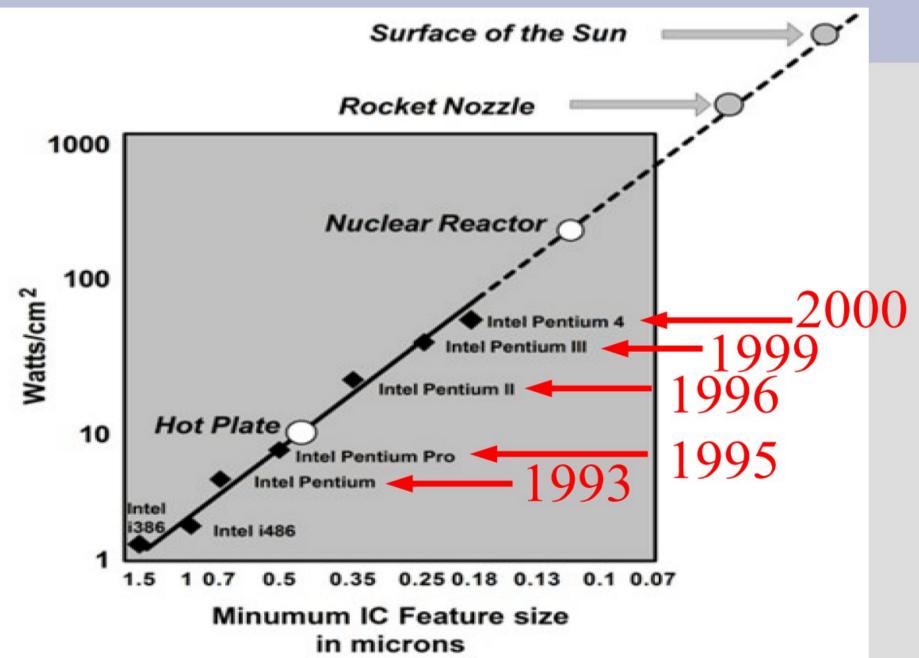
**Stock Clock Speed** 



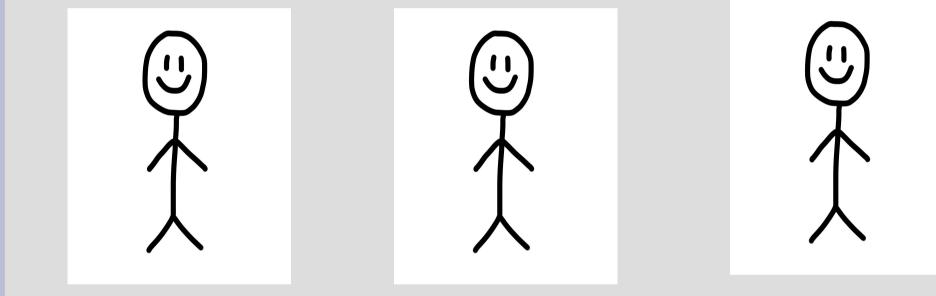


Intel Processor Clock Speed (MHz)





You and your siblings are going to make dinner



How would all three of you make...:(1) turkey?(2) a salad?

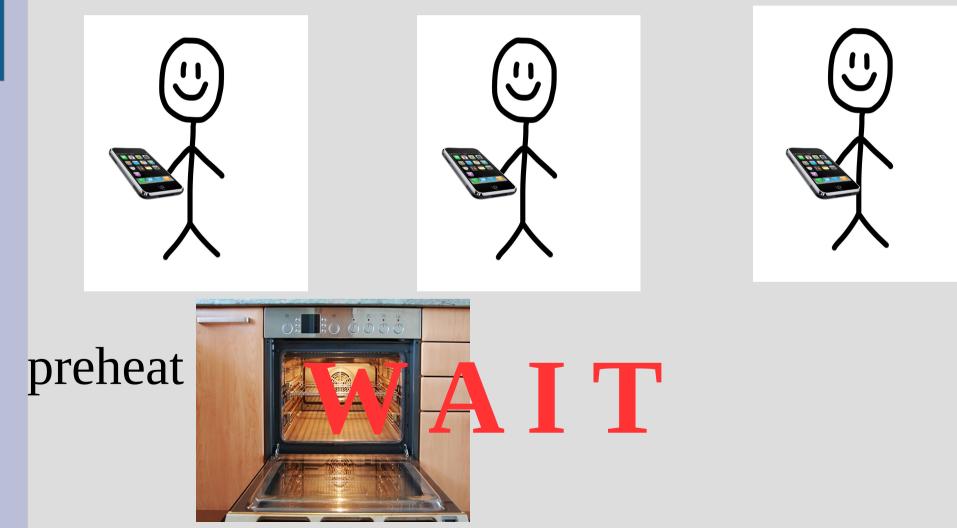












If you make turkey....

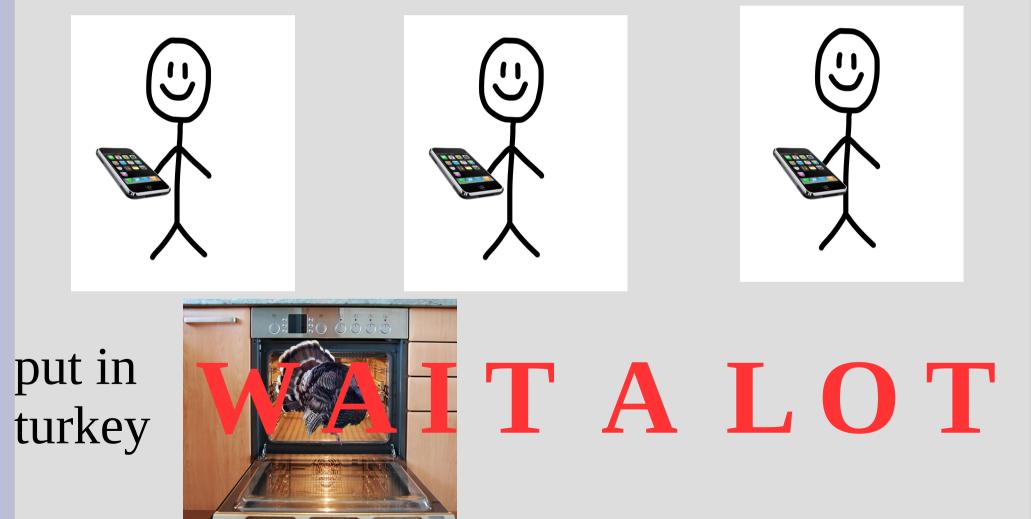


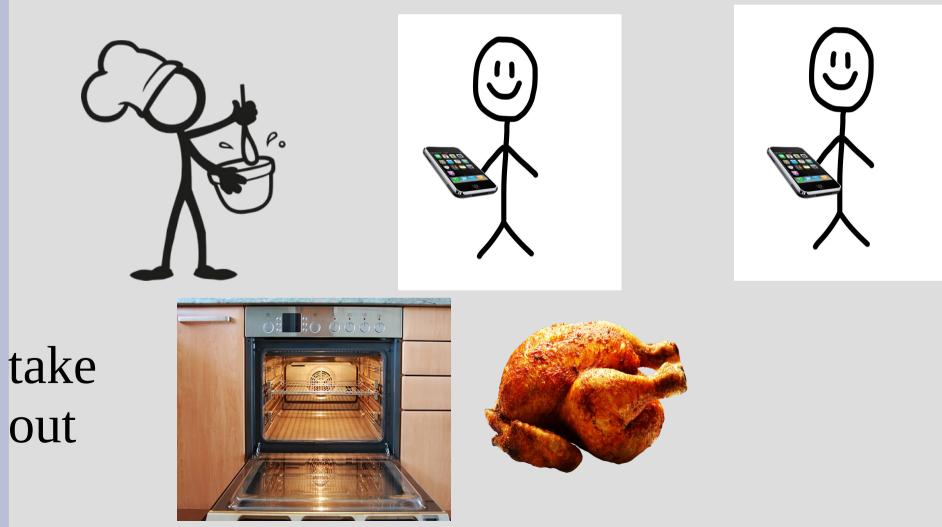


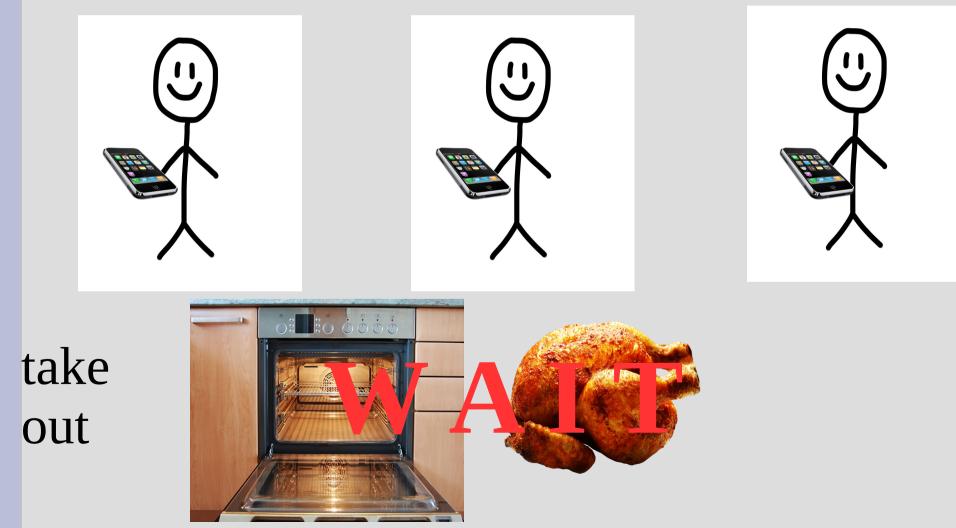


put in turkey

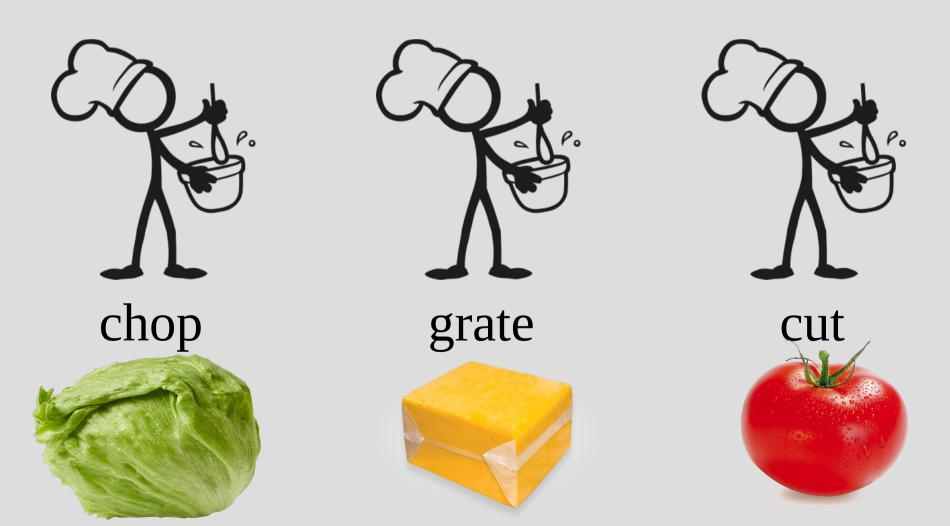




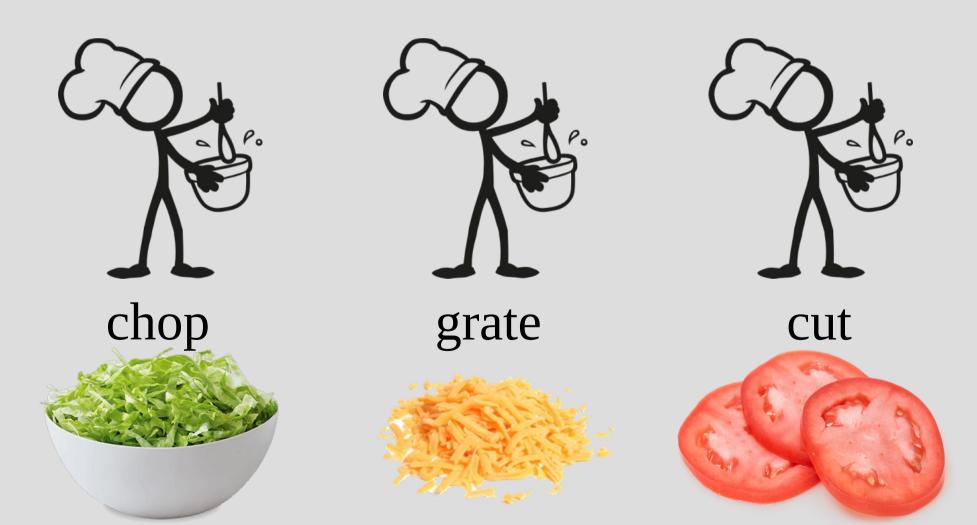




If you make a salad...



If you make a salad...



If you make a salad...



To make use of last 15 years of technology, need to have algorithms like salad

Multiple cooks need to work at the same time to create the end result

Computers these days have 4-8 "cooks" in them, so try not to make turkey

#### Correctness

An algorithm is <u>correct</u> if it takes an <u>input</u> and always halts with the correct <u>output</u>.

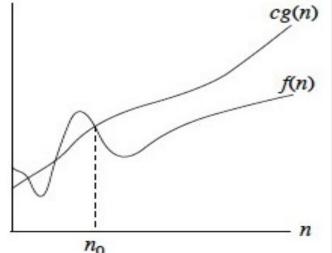
Many hard problems there is no known correct algorithm and inste approximate algorithms are used

#### What does O(n<sup>2</sup>) mean?

 $\Theta(n^2)$ ?

 $Ω(n^2)?$ 

If our algorithm runs in f(n) time, then our algorithm is O(g(n)) means there is an  $n_0$  and c such that  $0 \le f(n) \le c g(n)$  for all  $n \ge n_0$ 



O(g(n)) can be used for more than run time

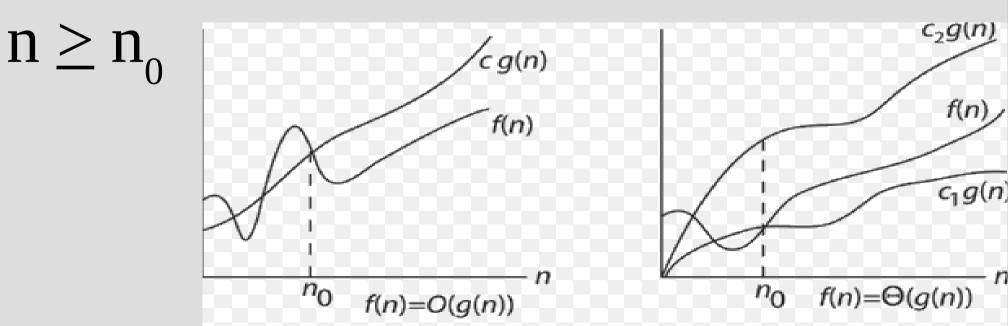
f(n)=O(g(n)) means that for large inputs (n), g(n) will not grow slower than f(n)

 $n = O(n^2)?$  n = O(n)? $n^2 = O(n)?$ 

#### f(n)=O(g(n)) gives an upper bound for the growth of f(n)

f(n)=Ω(g(n)) gives a lower bound for the growth of f(n), namely: there is an n<sub>0</sub> and c such that 0 ≤ c g(n) ≤ f(n) for all n ≥ n<sub>0</sub>

# f(n)=Θ(g(n)) is defined as: there is an n<sub>0</sub>, c<sub>1</sub> and c<sub>2</sub> such that $0 ≤ c_1 g(n) ≤ f(n) ≤ c_2 g(n)$ for all



Suppose  $f(n) = 2n^2 - 5n + 7$ Show  $f(n) = O(n^2)$ : we need to find 'c' and 'n<sub>o</sub>' so that  $c n^2 > 2n^2 - 5n + 7$ , guess c=3 $3 n^2 > 2n^2 - 5n + 7$  $n^2 > -5n + 7$ n > 2, so c=3 and  $n_0=2$  proves this

Suppose  $f(n) = 2n^2 - 5n + 7$ Show  $f(n) = \Omega(n^2)$ :

For any general f(n) show:  $f(n)=\Theta(g(n))$  if and only if f(n)=O(g(n)) and  $f(n)=\Omega(g(n))$ 

Suppose  $f(n) = 2n^2 - 5n + 7$ Show  $f(n) = \Omega(n^2)$ : again we find a 'c' and 'n<sub>o</sub>'  $cn^2 < 2n^2 - 5n + 7$ , guess c=1  $1 n^2 < 2n^2 - 5n + 7$  $0 < n^2 - 5n + 7$ , or  $n^2 > 5n - 7$ n > 4, so c=1 and  $n_0 = 4$  proves this

 $f(n) = \Theta(g(n))$  implies f(n)=O(g(n)) and  $f(n)=\Omega(g(n))$ : by definition we have  $c_1'$ ,  $c_2'$ ,  $n_0'$  so  $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$  after  $n_0$  $0 \le c_1 g(n) \le f(n)$  after  $n_0$  is  $\Omega(g(n))$  $0 \le f(n) \le c_2 g(n)$  after  $n_0$  is O(g(n))

f(n)=O(g(n)) and  $f(n)=\Omega(g(n))$ implies  $f(n) = \Theta(g(n))$ : by definition we have  $c_1, c_2, n_0, n_1$  $\Omega(g(n))$  is  $0 \le c_1 g(n) \le f(n)$  after  $n_0$ O(g(n)) is  $0 \le f(n) \le c_2 g(n)$  after  $n_1$  $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$  after  $\max(n_0, n_1)$ 

There are also o(g(n)) and w(g(n)) but are rarely used

f(n)=o(g(n)) means for any c there is an  $n_0: 0 \le f(n) < c g(n)$  after  $n_0$ 

 $\lim(n \to \infty) \quad f(n)/g(n) = 0$ w(g(n)) is the opposite of o(g(n))

Big-O notation is used very frequently to describe run time of algorithms

It is fairly common to use big-O to bound the worst case and provide empirical evaluation of runtime with data

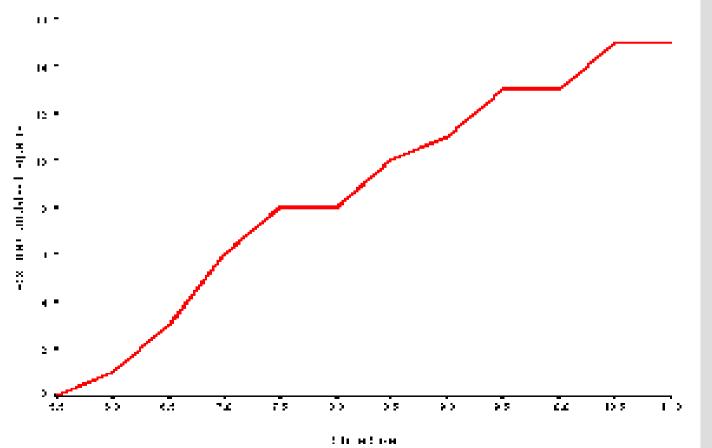
What is the running time of the following algorithms for n people: 1. Does anyone share my birthday? 2. Does any two people share a birthday? 3. Does any two people share a

birthday (but I can only remember and ask one date at a time)?

1. O(n) or just n 2. O(n) or just n for small n (https://en.wikipedia.org/wiki/Birth day\_problem) Worst case: 365 (technically 366) Average run time: 24.61659 3.  $O(n^2)$  or  $n^2$ 

#### Math review

# Monotonically increasing means: for all $m \le n$ implies $f(m) \le f(n)$



#### Math review

Monotonically decreasing means: for all  $m \le n$  implies  $f(m) \ge f(n)$ 

Strictly increasing means: for all m < n implies f(m) < f(n)

In proving it might be useful to use monotonicity of f(n) or d/dn f(n)

#### Math review

floor/ceiling? modulus? exponential rules and definition? logs? factorials?

# Floors and ceilings

floor is "round down" floor(8/3) = 2

ceiling is "round up"
ceiling(8/3) = 3
(both are monotonically increasing)

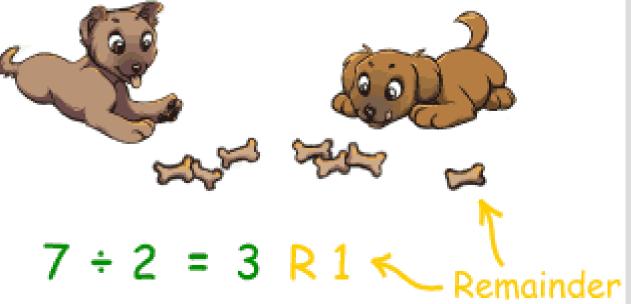
Prove: floor(n/2) + ceiling(n/2) = n

# Floors and ceilings

Prove: floor(n/2) + ceiling(n/2) = n Case: n is even, n = 2kfloor(2k/2) + ceiling(2k/2) = 2k $\mathbf{k} + \mathbf{k} = 2\mathbf{k}$ Case: n is odd, n = 2k+1floor((2k+1)/2) + ceiling((2k+1)/2)floor(k+1/2) + ceiling(k+1/2)k + k + 1 = 2k + 1

# Modulus

Modulus is the remainder of the quotient a/n: a mod n = a – n floor(a/n) 7 % 2 = 1



#### $n! = 1 \times 2 \times 3 \times \dots \times n$

#### $4! = 4 \ge 3 \ge 2 \ge 1 = 24$

Guess the order (low to high): 1,000 1,000,000 1,000,000,000 2<sup>5</sup> 2<sup>10</sup> 2<sup>15</sup> 2<sup>20</sup> 2<sup>30</sup> 5! 10! 15! 20!

The order is (low to high):  $\{2^5, 5!, (1,000), 2^{10}, 2^{15},$  $(1,000,000), 2^{20}, 10!,$  $(1,000,000,000), 2^{30}, 15!, 20!$ 10! = 3,628,80015! ≈ 1,307,674,400,000  $20! \approx 2,432,902,000,000,000,000$  $(2^{10} = 1024 \approx 1,000 = 10^3)$ 

Find g(n) such that  $(g(n) \neq n!)$ :

#### 1. $n! = \Omega(g(n))$

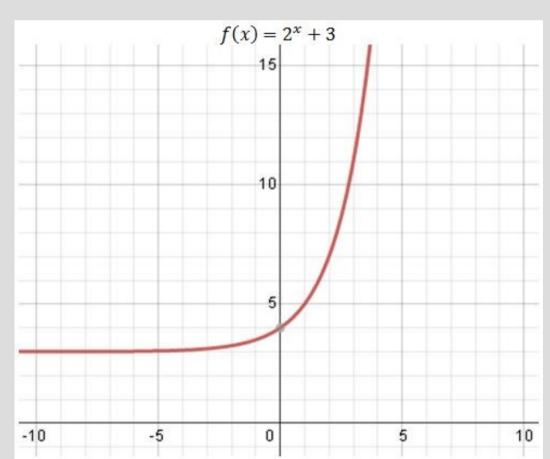
#### 2. n! = O(g(n))

# n! = Ω(g(n)) n! = Ω(1) is a poor answer n! = Ω(2<sup>n</sup>) is decent

2. n! = O(g(n))-  $n! = O(n^n)$ 

#### $(a^n)^m = a^{nm}$ : $(2^3)^4 = 8^4 = 4096 = 2^{12}$ $a^n a^m = a^{n+m}$ : $2^3 2^4 = 8x16 = 128 = 2^7$

 $a^{0} = 1$  $a^{1} = a$  $a^{-1} = 1/a$ 



for all constants: a > 1 and b: lim $(n \rightarrow \infty)$  n<sup>b</sup> /  $a^n = 0$ 

What does this mean in big-O notation?

What does this mean in big-O notation?

n<sup>b</sup> = O(a<sup>n</sup>) for any a>1 and b
i.e. the exponential of anything
eventually grows faster than any
polynomials

Sometimes useful facts:

 $e^x = sum(i=0 \text{ to } \infty) x^i / i!$ 

 $e^{x} = \lim(n \rightarrow \infty) (1 + x/n)^{n}$ 

Write the first 5 numbers, can you find a pattern:

1.  $F_i = F_{i-1} + 2$  with  $f_0 = 0$ 2.  $F_i = 2F_{i-1}$  with  $f_0 = 3$ 3.  $F_i = F_{i-1} + F_{i-2}$ , with  $f_0 = 0$  and  $f_1 = 1$ 

1.  $F_i = F_{i-1} + 2$  with  $f_0 = 0$ -  $F_0=0$ ,  $F_1=2$ ,  $F_2=4$ ,  $F_3=6$ ,  $F_4=8$  $-F_{i} = 2i$ 2.  $F_i = 2F_{i-1}$  with  $f_0 = 3$ -  $F_0=3$ ,  $F_1=6$ ,  $F_2=12$ ,  $F_3=24$ ,  $F_4=48$  $-F_{i} = 3 \times 2^{i}$ 

3.  $F_i = F_{i-1} + F_{i-2}$ , with  $f_0 = 0$  and  $f_1 = 1$ -  $F_0=0$ ,  $F_1=1$ ,  $F_2=1$ ,  $F_3=2$ ,  $F_4=3$ -  $F_0 = 5$ ,  $F_1 = 8$ ,  $F_2 = 13$ ,  $F_3 = 21$ ,  $F_4 = 34$ Magic! - Fi  $[(1+sqrt(5))^{i}-(1-sqrt(5))^{i}]/(2^{i}sqrt(5))$ 

3.  $F_i = F_{i-1} + F_{i-2}$  is homogeneous We as  $F_i = cF_{i-1}$  is exponential, we guess a solution of the form:  $F^{i} = F^{i-1} + F^{i-2}$ , divide by  $F^{i-2}$  $F^2 = F + 1$ , solve for F  $F = (1 \pm sqrt(5))/2$ , so have the form  $a[(1 + sqrt(5))/2]^{i} + b[(1 - sqrt(5))/2]^{i}$ 

 $a[(1 + sqrt(5))/2]^i + b[(1 - sqrt(5))/2]^i$ with  $F_0 = 0$  and  $F_1 = 1$ 

- 2x2 System of equations  $\rightarrow$  solve i=0: a[1] + b[1] = 0  $\rightarrow$  a = -b
- i=1: a[1+sqrt(5)/2] a[1-sqrt(5)/2] a[sqrt(5)] = 1
- a = 1/sqrt(5) = -b

 $F_i = 2F_{i-1} - F_{i-2}$ , change to exponent  $F^i = 2F^{i-1} - F^{i-2}$ , divide by  $F^{i-2}$   $F^2 = 2F - 1 \rightarrow (F-1)(F-1) = 0$ This will have solution of the form:  $1^i + i \ge 1^i$ 

# Next week sorting

- Insert sort
- Merge sortBucket sort
- Bucket soft
- And more!