Welcome to CSci 4041

Algorithms and Data Structures

Instructor (me)

James Parker Shepherd Labs 391

Primary contact: jparker@cs.umn.edu

Teaching Assistant

Pariya Babaie, Jayant Gupta, Song Liu, Anoop Shukla, Nikolaos Stefas, Kshitij Tayal Nitin Varyani
friends

Textbook

Introduction to Algorithms, Cormen et al., $3^{\text {rd }}$ edition

INTRODUCTIONTG ALGORITHMS

Discussion sections

These will typically reinforce the topics of the week (or exam review)

The TAs may do exercises, so bring something to write on (these exercises will not be graded)

Class website

www.cs.umn.edu/academics/classes Or google "umn.edu csci class"

Syllabus, schedule, other goodies
Moodle page will have grades and Possibly homework submission

www．cs．umn．edu

Campuses：Twin Cities Crookston Duluth Morris Rochester Other Locations

University of Minnesota Driven to Discover＂		myU＞One Stop＞			
		Search U of M Web Sites			Search
Lege of SEncineering	CSE Home	CSE Directory	Give to CSE		ent Dashboard

Engineering

CSci 4041H：Algorithms and Data Structures

Class Announcements

－09／08／2015
ALL YOUR BASE ARE BELONG TO US．
© 2015 Regents of the University of Minnesota．All rights reserved．
The University of Minnesota is an equal opportunity educator and employer Last modified on September 8， 2015

Twin Cities Campus：Parking \＆Transportation Maps \＆Directions Directories Contact U of M Privacy

Syllabus

30\% Homework
20\% Programming assignments 25\% Midterm (Oct. 23) 25\% Final (Dec. 18)
(No late homework; must ask for extension 48hr before deadline)

Programming vote

C/C++?

Java?
Python?

Syllabus

Grading scale: 93\% A 90\% A-
87\% B+
83\% B
80\% B-

77\% C+
$73 \% \mathrm{C}$
$70 \% \mathrm{C}-$
$67 \% \mathrm{D}+$
$60 \% \mathrm{D}$
Below F

Schedule

Ch. 1, 2, 3: Introduction
Ch. 2.1, 2.3, 7, 8: Sequences and Sets Ch. 6, 9, 13, 32: More Sequences and Sets Ch. 22, 23, 24, 25, 26: Graph Algorithms Ch. 33: Geometric Algorithms Ch. 4.2, 30, 31: Algebraic and Numeric Alg. Ch. 34: NP-Completeness

Syllabus

Any questions?

Course overview

Major topics:

- Learn lots of algorithms
- Decide which algorithm is most appropriate
- Find asymptotic runtime and prove an algorithm works (mathy)

Algorithms

We assume you can program
This class focuses on improving your ability to make code run faster by picking the correct algorithm

This is a crucial skill for large code

Algorithms

We will do a pretty thorough job of sorting algorithms

After that we will touch interesting or important algorithms

The goal is to expose you to a wide range of ways to solve problems

Algorithms

Quite often there is not a single algorithm that always performs best

Most of the time there are trade-offs: some algorithms are fast, some use more/less memory, some take use parallel computing...

Algorithms

A major point of this class is to tell how scalable algorithms are

If you have a 2 MB input text file and your program runs in 2 min ... what if you input a 5MB file? ... 20 MB file?

Algorithms

In addition to using math to find the speed of algorithms, we will prove algorithms correctly find the answer

This is called the "correctness" of an algorithm (and often will be proof-by-induction)

Introduction / Review

Moore's Law

Number of transistors double every two years

This trend has slowed a bit, closer to doubling every 2.5 years

First computer

Memory: 1 MB

CPU:
2.4 Mhz

CPU trends

Stock Clock Speed

CPU trends

CPU trends

Intel Processor Clock Speed (MHz)

CPU trends

Parallel processing (cooking)

 You and your siblings are going to make dinner

How would all three of you make... :
(1) turkey?
(2) a salad?

Parallel processing (cooking)

If you make turkey....

Parallel processing (cooking)

If you make turkey....
take out

Parallel processing (cooking)

If you make turkey....
take out

Parallel processing (cooking)

If you make a salad...

grate

cut

Parallel processing (cooking)

If you make a salad...

chop

grate

cut

Parallel processing (cooking)

If you make a salad...

dump together

Parallel processing (cooking)

To make use of last 15 years of technology, need to have algorithms like salad

Multiple cooks need to work at the same time to create the end result

Computers these days have 4-8 "cooks" in them, so try not to make turkey

Correctness

An algorithm is correct if it takes an input and always halts with the correct output.

Many hard problems there is no known correct algorithm and inste approximate algorithms are used

Asymptotic growth

What does $O\left(n^{2}\right)$ mean?

$\Theta\left(n^{2}\right) ?$
$\Omega\left(n^{2}\right) ?$

Asymptotic growth

If our algorithm runs in $f(n)$ time, then our algorithm is $\mathrm{O}(\mathrm{g}(\mathrm{n})$) means there is an n_{0} and c such that $0 \leq f(n) \leq c g(n)$ for all $n \geq n_{0}$

$\mathrm{O}(\mathrm{g}(\mathrm{n}))$ can be used for
more than run time

Asymptotic growth

$\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n}))$ means that for large inputs (n), g(n) will not grow slower than $f(n)$
$\mathrm{n}=\mathrm{O}\left(\mathrm{n}^{2}\right)$?
$\mathrm{n}=\mathrm{O}(\mathrm{n})$?
$\mathrm{n}^{2}=\mathrm{O}(\mathrm{n})$?

Asymptotic growth

$\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n})$) gives an upper bound for the growth of $f(n)$
$\mathrm{f}(\mathrm{n})=\Omega(\mathrm{g}(\mathrm{n}))$ gives a lower bound for the growth of $f(n)$, namely: there is an n_{0} and c such that
$0 \leq \mathrm{c} g(\mathrm{n}) \leq \mathrm{f}(\mathrm{n})$ for all $\mathrm{n} \geq \mathrm{n}_{0}$

Asymptotic growth

$\mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n}))$ is defined as: there is an $\mathrm{n}_{0}, \mathrm{C}_{1}$ and c_{2} such that
$0 \leq \mathrm{c}_{1} \mathrm{~g}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n}) \leq \mathrm{c}_{2} \mathrm{~g}(\mathrm{n})$ for all
$\mathrm{n} \geq \mathrm{n}_{0}$

Asymptotic growth

Suppose $f(n)=2 n^{2}-5 n+7$ Show $f(n)=O\left(n^{2}\right)$:
we need to find ' c ' and ' n ' so that
c $n^{2}>2 n^{2}-5 n+7$, guess $c=3$
$3 n^{2}>2 n^{2}-5 n+7$
$n^{2}>-5 n+7$
$\mathrm{n}>2$, so $\mathrm{c}=3$ and $\mathrm{n}_{0}=2$ proves this

Asymptotic growth

Suppose $f(n)=2 n^{2}-5 n+7$ Show $f(n)=\Omega\left(n^{2}\right)$:

For any general $f(n)$ show: $\mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n}))$ if and only if $\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n}))$ and $\mathrm{f}(\mathrm{n})=\Omega(\mathrm{g}(\mathrm{n}))$

Asymptotic growth

Suppose $f(n)=2 n^{2}-5 n+7$ Show $f(n)=\Omega\left(n^{2}\right)$: again we find a 'c' and ' n_{0} ' $\mathrm{cn}^{2}<2 \mathrm{n}^{2}-5 \mathrm{n}+7$, guess $\mathrm{c}=1$ $1 n^{2}<2 n^{2}-5 n+7$
$0<n^{2}-5 n+7$, or $n^{2}>5 n-7$
$\mathrm{n}>4$, so $\mathrm{c}=1$ and $\mathrm{n}_{0}=4$ proves this

Asymptotic growth

$\mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n}))$ implies
$\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n}))$ and $\mathrm{f}(\mathrm{n})=\Omega(\mathrm{g}(\mathrm{n}))$:
by definition we have ' c_{1}, ' c_{2} ', ' n_{0} ' so
$0 \leq \mathrm{C}_{1} \mathrm{~g}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n}) \leq \mathrm{C}_{2} \mathrm{~g}(\mathrm{n})$ after n_{0}
$0 \leq \mathrm{c}_{1} \mathrm{~g}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n})$ after n_{0} is $\Omega(\mathrm{g}(\mathrm{n}))$
$0 \leq f(n) \leq c_{2} g(n)$ after n_{0} is $O(g(n))$

Asymptotic growth

$f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$ implies $f(n)=\Theta(g(n))$:
by definition we have $\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{n}_{0}, \mathrm{n}_{1}$
$\Omega(g(n))$ is $0 \leq c_{1} g(n) \leq f(n)$ after n_{0}
$\mathrm{O}(\mathrm{g}(\mathrm{n}))$ is $0 \leq \mathrm{f}(\mathrm{n}) \leq \mathrm{c}_{2} \mathrm{~g}(\mathrm{n})$ after n_{1}
$0 \leq \mathrm{C}_{1} \mathrm{~g}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n}) \leq \mathrm{C}_{2} \mathrm{~g}(\mathrm{n})$ after $\max \left(\mathrm{n}_{0}, \mathrm{n}_{1}\right)$

Asymptotic growth

There are also o(g(n)) and w(g(n)) but are rarely used
$\mathrm{f}(\mathrm{n})=\mathrm{o}(\mathrm{g}(\mathrm{n}))$ means for any c there is an $\mathrm{n}_{0}: 0 \leq \mathrm{f}(\mathrm{n})<\mathrm{c} \mathrm{g}(\mathrm{n})$ after n_{0}
$\lim (\mathrm{n} \rightarrow \infty) \quad \mathrm{f}(\mathrm{n}) / \mathrm{g}(\mathrm{n})=0$ $\mathrm{w}(\mathrm{g}(\mathrm{n}))$ is the opposite of $\mathrm{o}(\mathrm{g}(\mathrm{n}))$

Asymptotic growth

Big-O notation is used very frequently to describe run time of algorithms

It is fairly common to use big-O to bound the worst case and provide empirical evaluation of runtime with data

Asymptotic growth

What is the running time of the following algorithms for n people: 1. Does anyone share my birthday?
2. Does any two people share a birthday?
3. Does any two people share a birthday (but I can only remember and ask one date at a time)?

Asymptotic growth

1. $\mathrm{O}(\mathrm{n})$ or just n
2. $O(n)$ or just n for small n
(https://en.wikipedia.org/wiki/Birth day_problem)
Worst case: 365 (technically 366) Average run time: 24.61659 3. $\mathrm{O}\left(\mathrm{n}^{2}\right)$ or n^{2}

Math review

Monotonically increasing means: for all $\mathrm{m} \leq \mathrm{n}$ implies $\mathrm{f}(\mathrm{m}) \leq \mathrm{f}(\mathrm{n})$

Math review

Monotonically decreasing means: for all $\mathrm{m} \leq \mathrm{n}$ implies $\mathrm{f}(\mathrm{m}) \geq \mathrm{f}(\mathrm{n})$

Strictly increasing means: for all $\mathrm{m}<\mathrm{n}$ implies $\mathrm{f}(\mathrm{m})<\mathrm{f}(\mathrm{n})$

In proving it might be useful to use monotonicity of $f(n)$ or $d / d n f(n)$

Math review

floor/ceiling? modulus?

 exponential rules and definition? logs?factorials?

Floors and ceilings

floor is "round down" floor(8/3) = 2

ceiling is "round up" ceiling(8/3) = 3
(both are monotonically increasing)
Prove: floor(n/2) + ceiling(n/2) = n

Floors and ceilings

Prove: floor(n/2) + ceiling(n/2) = n Case: n is even, $\mathrm{n}=2 \mathrm{k}$ floor(2k/2) + ceiling(2k/2) $=2 \mathrm{k}$ $\mathrm{k}+\mathrm{k}=2 \mathrm{k}$
Case: n is odd, $\mathrm{n}=2 \mathrm{k}+1$ floor((2k+1)/2) + ceiling((2k+1)/2) floor($\mathrm{k}+1 / 2$) + ceiling $(\mathrm{k}+1 / 2)$ $\mathrm{k}+\mathrm{k}+1=2 \mathrm{k}+1$

Modulus

Modulus is the remainder of the quotient a / n :

a $\bmod \mathrm{n}=\mathrm{a}-\mathrm{n}$ floor(a / n)
$7 \% 2=1$

Factorial

$n!=1 \times 2 \times 3 \times \ldots \times n$
$4!=4 \times 3 \times 2 \times 1=24$

Guess the order (low to high): 1,000 1,000,000 1,000,000,000 $2^{5} 2^{10} 2^{15} 2^{20} 2^{30}$ $5!10!15!20!$

Factorial

The order is (low to high): $\left\{2^{5}, 5!,(1,000), 2^{10}, 2^{15}\right.$,
$(1,000,000), 2^{20}, 10!$,
(1,000,000,000), $\left.2^{30}, 15!, 20!\right\}$
$10!=3,628,800$
$15!\approx 1,307,674,400,000$
$20!\approx 2,432,902,000,000,000,000$
$\left(2^{10}=1024 \approx 1,000=10^{3}\right)$

Factorial

Find $g(n)$ such that $(g(n) \neq n!)$:

1. $\mathrm{n}!=\Omega(\mathrm{g}(\mathrm{n}))$
2. $n!=O(g(n))$

Factorial

1. $\mathrm{n}!=\Omega(\mathrm{g}(\mathrm{n}))$
 $-\mathrm{n}!=\Omega(1)$ is a poor answer
 $-\mathrm{n}!=\Omega\left(2^{\mathrm{n}}\right)$ is decent

$$
\begin{aligned}
& \text { 2. } \mathrm{n}!=O(g(n)) \\
& -n!=O\left(n^{n}\right)
\end{aligned}
$$

Exponentials

$\left(a^{n}\right)^{m}=a^{\mathrm{nm}}:\left(2^{3}\right)^{4}=8^{4}=4096=2^{12}$
$a^{n} a^{m}=a^{n+m}: 2^{3} 2^{4}=8 x 16=128=2^{7}$
$\mathrm{a}^{0}=1$
$\mathrm{a}^{1}=\mathrm{a}$
$\mathrm{a}^{-1}=1 / \mathrm{a}$

Exponentials

for all constants: $\mathrm{a}>1$ and b : $\lim (\mathrm{n} \rightarrow \infty) \mathrm{n}^{\mathrm{b}} / \mathrm{a}^{\mathrm{n}}=0$

What does this mean in big-O notation?

Exponentials

What does this mean in big-O notation?
$\mathrm{n}^{\mathrm{b}}=\mathrm{O}\left(\mathrm{a}^{\mathrm{n}}\right)$ for any $\mathrm{a}>1$ and b i.e. the exponential of anything eventually grows faster than any polynomials

Exponentials

Sometimes useful facts:

$\mathrm{e}^{\mathrm{x}}=\operatorname{sum}(\mathrm{i}=0$ to $\infty) \mathrm{x}^{\mathrm{i}} / \mathrm{i}$!
$\mathrm{e}^{\mathrm{x}}=\lim (\mathrm{n} \rightarrow \infty)(1+\mathrm{x} / \mathrm{n})^{\mathrm{n}}$

Recurrence relationships

Write the first 5 numbers, can you find a pattern:

1. $\mathrm{F}_{\mathrm{i}}=\mathrm{F}_{\mathrm{i}-1}+2$ with $\mathrm{f}_{0}=0$
2. $\mathrm{F}_{\mathrm{i}}=2 \mathrm{~F}_{\mathrm{i}-1}$ with $\mathrm{f}_{0}=3$
3. $F_{i}=F_{i-1}+F_{i-2}$, with $f_{0}=0$ and $f_{1}=1$

Recurrence relationships

$$
\begin{aligned}
& \text { 1. } \mathrm{F}_{\mathrm{i}}=\mathrm{F}_{\mathrm{i}-1}+2 \text { with } \mathrm{f}_{0}=0 \\
& -\mathrm{F}_{0}=0, \mathrm{~F}_{1}=2, \mathrm{~F}_{2}=4, \mathrm{~F}_{3}=6, \mathrm{~F}_{4}=8 \\
& -\mathrm{F}_{\mathrm{i}}=2 \mathrm{i} \\
& \text { 2. } \mathrm{F}_{\mathrm{i}}=2 \mathrm{~F}_{\mathrm{i}-1} \text { with } \mathrm{f}_{0}=3 \\
& -\mathrm{F}_{0}=3, \mathrm{~F}_{1}=6, \mathrm{~F}_{2}=12, \mathrm{~F}_{3}=24, \mathrm{~F}_{4}=48 \\
& -\mathrm{F}_{\mathrm{i}}=3 \times 2^{\mathrm{i}}
\end{aligned}
$$

Recurrence relationships

3. $\mathrm{F}_{\mathrm{i}}=\mathrm{F}_{\mathrm{i}-1}+\mathrm{F}_{\mathrm{i}-2}$, with $\mathrm{f}_{0}=0$ and $\mathrm{f}_{1}=1$

- $\mathrm{F}_{0}=0, \mathrm{~F}_{1}=1, \mathrm{~F}_{2}=1, \mathrm{~F}_{3}=2, \mathrm{~F}_{4}=3$
$-\mathrm{F}_{0}=5, \mathrm{~F}_{1}=8, \mathrm{~F}_{2}=13, \mathrm{~F}_{3}=21, \mathrm{~F}_{4}=34$
- $\mathrm{Fi}=$
$\left[(1+\operatorname{sqrt}(5))^{\mathrm{i}}-(1-\mathrm{sqrt}(5))^{\mathrm{i}}\right] /\left(2^{\mathrm{i}} \mathrm{sqrt}(5)\right)$

Recurrence relationships

3. $\mathrm{F}_{\mathrm{i}}=\mathrm{F}_{\mathrm{i}-1}+\mathrm{F}_{\mathrm{i}-2}$ is homogeneous We as $\mathrm{F}_{\mathrm{i}}=\mathrm{cF} \mathrm{F}_{\mathrm{i}-1}$ is exponential, we guess a solution of the form: $\mathrm{F}^{\mathrm{i}}=\mathrm{F}^{\mathrm{i}-1}+\mathrm{F}^{\mathrm{i}-2}$, divide by $\mathrm{F}^{\mathrm{i}-2}$ $F^{2}=F+1$, solve for F $\mathrm{F}=(1 \pm \operatorname{sqrt}(5)) / 2$, so have the form $\mathrm{a}[(1+\operatorname{sqrt}(5)) / 2]^{\mathrm{i}}+\mathrm{b}[(1-\operatorname{sqrt}(5)) / 2]^{\mathrm{i}}$

Recurrence relationships

$\mathrm{a}[(1+\operatorname{sqrt}(5)) / 2]^{\mathrm{i}}+\mathrm{b}[(1-\operatorname{sqrt}(5)) / 2]^{\mathrm{i}}$
with $\mathrm{F}_{0}=0$ and $\mathrm{F}_{1}=1$
$2 x 2$ System of equations \rightarrow solve $\mathrm{i}=0: \mathrm{a}[1]+\mathrm{b}[1]=0 \rightarrow \mathrm{a}=-\mathrm{b}$
$\mathrm{i}=1: \mathrm{a}[1+\operatorname{sqrt}(5) / 2]-\mathrm{a}[1-\operatorname{sqrt}(5) / 2]$ $\mathrm{a}[\mathrm{sqrt}(5)]=1$
$a=1 / \operatorname{sqrt}(5)=-b$

Recurrence relationships

$\mathrm{F}_{\mathrm{i}}=2 \mathrm{~F}_{\mathrm{i}-1}-\mathrm{F}_{\mathrm{i}-2}$, change to exponent
$\mathrm{F}^{\mathrm{i}}=2 \mathrm{~F}^{\mathrm{i}-1}-\mathrm{F}^{\mathrm{i}-2}$, divide by $\mathrm{F}^{\mathrm{i}-2}$
$\mathrm{F}^{2}=2 \mathrm{~F}-1 \rightarrow(\mathrm{~F}-1)(\mathrm{F}-1)=0$ This will have solution of the form: $1^{\mathrm{i}}+\mathrm{ix} 1^{\mathrm{i}}$

Next week sorting

- Insert sort
- Merge sort
- Bucket sort
- And more!

