
Welcome to CSci 4041

Algorithms and Data Structures

James Parker
Shepherd Labs 391

Instructor (me)

Primary contact:
jparker@cs.umn.edu

mailto:jparker@cs.umn.edu

Teaching Assistant

Pariya Babaie, Jayant Gupta,
Song Liu, Anoop Shukla,
Nikolaos Stefas, Kshitij Tayal
Nitin Varyani

Introduction to
Algorithms,
Cormen et al.,
3rd edition

Textbook

Discussion sections

These will typically reinforce the
topics of the week (or exam review)

The TAs may do exercises, so
bring something to write on
(these exercises will not be graded)

Class website

Syllabus, schedule, other goodies

Moodle page will have grades and
Possibly homework submission

www.cs.umn.edu/academics/classes
Or google “umn.edu csci class”

http://www.cs.umn.edu/academics/classes

www.cs.umn.edu

30% Homework
20% Programming assignments
25% Midterm (Oct. 23)
25% Final (Dec. 18)

(No late homework; must ask for
extension 48hr before deadline)

Syllabus

C/C++?

Java?

Python?

Programming vote

Grading scale:
93% A
90% A-
87% B+
83% B
80% B-

Syllabus

77% C+
73% C
70% C-
67% D+
60% D
Below F

Ch. 1, 2, 3: Introduction
Ch. 2.1, 2.3, 7, 8: Sequences and Sets
Ch. 6, 9, 13, 32: More Sequences and Sets
Ch. 22, 23, 24, 25, 26: Graph Algorithms
Ch. 33: Geometric Algorithms
Ch. 4.2, 30, 31: Algebraic and Numeric Alg.
Ch. 34: NP-Completeness

Schedule

Syllabus

Any questions?

Course overview

Major topics:
- Learn lots of algorithms
- Decide which algorithm is

most appropriate
- Find asymptotic runtime

and prove an algorithm works
(mathy)

Algorithms

We assume you can program

This class focuses on improving
your ability to make code run faster
by picking the correct algorithm

This is a crucial skill for large code

Algorithms

We will do a pretty thorough job
of sorting algorithms

After that we will touch interesting
or important algorithms

The goal is to expose you to a wide
range of ways to solve problems

Algorithms

Quite often there is not a single
algorithm that always performs best

Most of the time there are trade-offs:
some algorithms are fast,
some use more/less memory,
some take use parallel computing...

Algorithms

A major point of this class is to tell
how scalable algorithms are

If you have a 2MB input text file
and your program runs in 2 min
... what if you input a 5MB file?

... 20 MB file?

Algorithms

In addition to using math to find the
speed of algorithms, we will prove
algorithms correctly find the answer

This is called the “correctness” of
an algorithm (and often will be
proof-by-induction)

Introduction / Review

Moore's Law

Number of transistors double every
two years

This trend has slowed a bit,
closer to doubling every 2.5 years

First computer

Memory:
1 MB

CPU:
2.4 Mhz

CPU trends

CPU trends

CPU trends

CPU trends

Parallel processing (cooking)

You and your siblings are going to make dinner

How would all three of you make... :
(1) turkey?
(2) a salad?

Parallel processing (cooking)

If you make turkey....

preheat

Parallel processing (cooking)

If you make turkey....

preheat W A I T

Parallel processing (cooking)

If you make turkey....

put in
turkey

Parallel processing (cooking)

If you make turkey....

W A I T A L O Tput in
turkey

Parallel processing (cooking)

If you make turkey....

take
out

Parallel processing (cooking)

If you make turkey....

W A I Ttake
out

Parallel processing (cooking)

If you make a salad...

chop grate cut

Parallel processing (cooking)

If you make a salad...

chop grate cut

Parallel processing (cooking)

If you make a salad...

dump together

Parallel processing (cooking)

To make use of last 15 years of technology,
need to have algorithms like salad

Multiple cooks need to work at the same
time to create the end result

Computers these days have 4-8 “cooks”
in them, so try not to make turkey

Correctness

An algorithm is correct if it takes
an input and always halts with the
correct output.

Many hard problems there is no
known correct algorithm and instead
approximate algorithms are used

Asymptotic growth

What does O(n2) mean?

Θ(n2)?

Ω(n2)?

Asymptotic growth

If our algorithm runs in f(n) time,
then our algorithm is O(g(n))
means there is an n

0
 and c such that

0 < f(n) < c g(n) for all n > n
0

O(g(n)) can be used for
more than run time

Asymptotic growth

f(n)=O(g(n)) means that for large
inputs (n), g(n) will not grow
slower than f(n)

n = O(n2)?
n = O(n)?
n2 = O(n)?

Asymptotic growth

f(n)=O(g(n)) gives an upper bound
for the growth of f(n)

f(n)=Ω(g(n)) gives a lower bound
for the growth of f(n), namely:
there is an n

0
 and c such that

0 < c g(n) < f(n) for all n > n
0

Asymptotic growth

f(n)=Θ(g(n)) is defined as:
there is an n

0
, c

1
 and c

2
 such that

0 < c
1
 g(n) < f(n) < c

2
 g(n) for all

n > n
0

Asymptotic growth

Suppose f(n) = 2n2 – 5n + 7
Show f(n) = O(n2):
we need to find 'c' and 'n

0
' so that

c n2 > 2n2 – 5n + 7, guess c=3
3 n2 > 2n2 – 5n + 7
n2 > - 5n + 7
n > 2, so c=3 and n

0
=2 proves this

Asymptotic growth

Suppose f(n) = 2n2 – 5n + 7
Show f(n) = Ω(n2):

For any general f(n) show:
f(n)=Θ(g(n)) if and only if
f(n)=O(g(n)) and f(n)=Ω(g(n))

Asymptotic growth

Suppose f(n) = 2n2 – 5n + 7
Show f(n) = Ω(n2):
again we find a 'c' and 'n

0
'

cn2 < 2n2 – 5n + 7, guess c=1
1 n2 < 2n2 – 5n + 7
0 < n2 -5n +7, or n2 > 5n -7
n > 4, so c=1 and n

0
=4 proves this

Asymptotic growth

f(n)=Θ(g(n)) implies
f(n)=O(g(n)) and f(n)=Ω(g(n)):
by definition we have 'c

1
', 'c

2
', 'n

0
' so

0 < c
1
 g(n) < f(n) < c

2
 g(n) after n

0

0 < c
1
 g(n) < f(n) after n

0
 is Ω(g(n))

0 < f(n) < c
2
 g(n) after n

0
 is O(g(n))

Asymptotic growth

f(n)=O(g(n)) and f(n)=Ω(g(n))
implies f(n)=Θ(g(n)):
by definition we have c

1
, c

2
, n

0
, n

1

Ω(g(n)) is 0 < c
1
 g(n) < f(n) after n

0

O(g(n)) is 0 < f(n) < c
2
 g(n) after n

1

0 < c
1
 g(n) < f(n) < c

2
 g(n) after

max(n
0
,n

1
)

Asymptotic growth

There are also o(g(n)) and w(g(n))
but are rarely used

f(n)=o(g(n)) means for any c there
is an n

0
: 0 < f(n) < c g(n) after n

0

lim(n→∞) f(n)/g(n) = 0
w(g(n)) is the opposite of o(g(n))

Asymptotic growth

Big-O notation is used very
frequently to describe run time of
algorithms

It is fairly common to use big-O
to bound the worst case and
provide empirical evaluation of
runtime with data

Asymptotic growth

What is the running time of the
following algorithms for n people:
1. Does anyone share my birthday?
2. Does any two people share a
birthday?
3. Does any two people share a
birthday (but I can only remember
and ask one date at a time)?

Asymptotic growth

1. O(n) or just n
2. O(n) or just n for small n
(https://en.wikipedia.org/wiki/Birth
day_problem)
Worst case: 365 (technically 366)
Average run time: 24.61659
3. O(n2) or n2

Math review

Monotonically increasing means:
for all m < n implies f(m) < f(n)

Math review

Monotonically decreasing means:
for all m < n implies f(m) > f(n)

Strictly increasing means:
for all m < n implies f(m) < f(n)

In proving it might be useful to use
monotonicity of f(n) or d/dn f(n)

Math review

floor/ceiling?
modulus?
exponential rules and definition?
logs?
factorials?

Floors and ceilings

floor is “round down”
floor(8/3) = 2

ceiling is “round up”
ceiling(8/3) = 3
(both are monotonically increasing)

Prove: floor(n/2) + ceiling(n/2) = n

Floors and ceilings

Prove: floor(n/2) + ceiling(n/2) = n
Case: n is even, n = 2k
floor(2k/2) + ceiling(2k/2) = 2k
k + k = 2k
Case: n is odd, n = 2k+1
floor((2k+1)/2) + ceiling((2k+1)/2)
floor(k+1/2) + ceiling(k+1/2)
k + k+1 = 2k + 1

Modulus

Modulus is the remainder of the
quotient a/n:
a mod n = a – n floor(a/n)
7 % 2 = 1

Factorial

n! = 1 x 2 x 3 x … x n

4! = 4 x 3 x 2 x 1 = 24

Guess the order (low to high):
1,000 1,000,000 1,000,000,000
25 210 215 220 230

 5! 10! 15! 20!

Factorial

The order is (low to high):
{25, 5!, (1,000), 210, 215,
(1,000,000), 220, 10!,
(1,000,000,000), 230, 15!, 20!}
10! = 3,628,800
15! ≈ 1,307,674,400,000
20! ≈ 2,432,902,000,000,000,000
(210 = 1024 ≈ 1,000 = 103)

Factorial

Find g(n) such that (g(n) ≠ n!):

1. n! = Ω(g(n))

2. n! = O(g(n))

Factorial

1. n! = Ω(g(n))
 - n! = Ω(1) is a poor answer
 - n! = Ω(2n) is decent

2. n! = O(g(n))
 - n! = O(nn)

Exponentials

(an)m = anm: (23)4 = 84 = 4096 = 212

anam = an+m: 2324 = 8x16 = 128 = 27

a0 = 1
a1 = a
a-1 = 1/a

Exponentials

for all constants: a>1 and b:
lim(n→∞) nb / an = 0

What does this mean in big-O
notation?

Exponentials

What does this mean in big-O
notation?

nb = O(an) for any a>1 and b
i.e. the exponential of anything
eventually grows faster than any
polynomials

Exponentials

Sometimes useful facts:

ex = sum(i=0 to ∞) xi / i!

ex = lim(n → ∞) (1 + x/n)n

Recurrence relationships

Write the first 5 numbers, can you
find a pattern:

1. F
i
 = F

i-1
 + 2 with f

0
 = 0

2. F
i
 = 2F

i-1
 with f

0
 = 3

3. F
i
 = F

i-1
 + F

i-2
, with f

0
=0 and f

1
=1

Recurrence relationships

1. F
i
 = F

i-1
 + 2 with f

0
 = 0

- F
0
=0, F

1
=2, F

2
=4, F

3
=6, F

4
=8

- F
i
 = 2i

2. F
i
 = 2F

i-1
 with f

0
 = 3

- F
0
=3, F

1
=6, F

2
=12, F

3
=24, F

4
=48

- F
i
 = 3 x 2i

Recurrence relationships

3. F
i
 = F

i-1
 + F

i-2
, with f

0
=0 and f

1
=1

- F
0
=0, F

1
=1, F

2
=1, F

3
=2, F

4
=3

- F
0
=5, F

1
=8, F

2
=13, F

3
=21, F

4
=34

- Fi =

[(1+sqrt(5))i–(1-sqrt(5))i]/(2isqrt(5))

Recurrence relationships

3. F
i
 = F

i-1
 + F

i-2
 is homogeneous

We as F
i
 = cF

i-1
 is exponential,

we guess a solution of the form:
Fi = Fi-1 + Fi-2, divide by Fi-2

F2 = F + 1, solve for F
F = (1 ± sqrt(5))/2, so have the form
a[(1 + sqrt(5))/2]i+b[(1 – sqrt(5))/2]i

Recurrence relationships

a[(1 + sqrt(5))/2]i+b[(1 – sqrt(5))/2]i

with F
0
=0 and F

1
=1

2x2 System of equations → solve
i=0: a[1] + b[1] = 0 → a = -b
i=1: a[1+sqrt(5)/2] – a[1-sqrt(5)/2]
 a[sqrt(5)] = 1
a = 1/sqrt(5) = -b

Recurrence relationships

F
i
 = 2F

i-1
 - F

i-2
 , change to exponent

Fi = 2Fi-1 - Fi-2

, divide by Fi-2

F2 = 2F – 1 → (F-1)(F-1) = 0
This will have solution of the form:
1i + i x 1i

Next week sorting

- Insert sort
- Merge sort
- Bucket sort
- And more!

