Sorting

. . | ‘-I‘ A
L

THE S
ORTING SYSTEM

scho
ol esta
blis
shing cliques doe
any proble

ms

3
I Recurrence relationships
n! = v2mn(3)" (14 6(5))
If we want Q(n!), we can shrink:
n! > 1(2)"(1+0)
n! > (2)”

- €

Can't simplify above to n"...

n! > e "n"

4 .
Outline

I Sorting!
-What's a sorting algorithm?
-Insertion sort
-Merge sort
-Divide & conquer (Master's thm)
-Quicksort

|5
I

I Input: sequence of numbers =
{a,a,...a }

Sorting problem

Output: different order =
{a',a, ... a'}, where

|6
I

General idea:
I -Examine one element at a time

Insertion sort

-Insert into correct place in an
already sorted sequence

-Repeat...

|7
I

Where to put a 10 of spades?
A 6 of hearts?

Insertion sort

|8
I

Where to put a 10 of spades?
A 6 of hearts? Between 5 and 7

Insertion sort

|9

Input: A[1,2, ... n]
I forj=2ton

i=j-1

key = Alj] // why do we need this?

while 1 > 0 AND Ali] > key
Ali+1] =Ali]
i=i—-1

Ali+1] = key

Insertion sort

|1o

Sort: {4, 5, 3,8, 1, 6, 2}

Insertion sort

|11

I Sort: {4, 5, 3,8, 1, 6, 2}

I {4} - done
{4, 5} — done
{4, 5, 3}, {4,3,5}, {3,4,5} — done
{3,4,5, 8} —done
{3,4,5,8,1}, {3,4,5, 1, 8},
{3,4,1,5, 8},1{3,1, 4,5, 8}
{1, 3,4, 5, 8} - done

Insertion sort

b

|12

Sort: {4, 5, 3, 8,1, 6, 2}

I {1, 3,4, 5, 8} —done
{1, 3,4,5, 8,6}, {1, 3,4,5, 6, 8}
-done

Insertion sort

{1, 3,4,5,6,8, 2},{1, 3,4,5, 6, 2
{1,3,4,5,2,6,8},{1,3,4,2,5,6
{1,3,2,4,5,6,8},{1, 2, 3,4,5,6
-done and done

co 00 OO
—_—

\o

|13

I Worst case runtime?

Insertion sort

Average case?

|14

Worst case runtime?

I Outer loop runs n times and inner
loop runs j-1 times
1+2+3+ ... +n-1 =7

Insertion sort

Average case?

|15

I Worst case runtime?
Outer loop runs n times and inner

loop runs j-1 times
1+2+3+ ... + n-1 = n(n-1)/2 = O(n?)

Insertion sort

Average case?
inner loop (j-1)/2 times = O(n*)

116 |
Insertion sort

Correctness:

I Base: Initial list is 1 element, sorted
Step: Inner loop places everything
bigger than key after it and
everything smaller before. Before &
after will be sorted as it started sorted
Termination: Terminates after n A[n]
placed, so whole list sorted

|17

I 1. Split pile in half

Merge sort

2. Sort each half (possibly
recursively with merge sort)

3. Recombine lists

|18

Merge sort

|3‘E|E‘1‘?‘E‘5‘4I
\\\&

| =

3|8 |6 |1

divide

712

' recursively sort

merge

B

,z/

4

S

6|7

8)

|19

Merge sort

|3‘E|E‘1‘?‘E‘5‘4I
\

| =

3|8 |6 |1

divide

712

' recursively sort

W W
HEEE 45?'
S merge e

a[5[6][7

8)

120
Merge sort

I |3‘E|E‘1‘?‘E‘5‘4I
,é:"// divide \

3|8 |6 |1 ?254|

recursively sort '

v v

1[3]6[8 45?'

121
Merge sort

I |3‘E|E‘1‘?‘E‘5‘4I
,é:"// divide \

3|8 |6 |1 ?254|

recursively sort

v

155 2-53
Eq s5[6[7[®8]

|22

Merge sort

|3‘E|E‘1‘?‘E‘5‘4I

,é:"// divide \

8|16 |1 f|12|95|4 I
: recursively sort |
W W

2|3@5

|23

Merge sort

I |3‘E|E‘1‘?‘E‘5‘4I

‘z,/"' divide \
3186 |1 F121|5 4|
: recursively sort |
W W

JEI 3

~

2

merge /

| 1

EIS

48

124
Merge sort

I |3‘E|E‘1‘?‘E‘5‘4I
‘z,/"' divide \

3|8 |6 |1 ?254|

recursively sort

|25

Merge sort

I |3‘E|E‘1‘?‘E‘5‘4I

‘z,/"' divide \
3|8 6|1 Fl12|5|4 I
' recursively sort |
W W
136 245
~a merge ;ZA//
I 1|2 IS 4 15| 6 ﬂ

|26

Merge sort

|3‘3|5‘1‘?‘E‘5‘4I
P

6

1

W

recursively sort

3

divide

TS

>

2

W

2

EIS

\“&m

27
Merge sort

I Merge(L[1, ..., n], R[1, ..., n
I i=1, j=1, k=1
whilei<n ORj<n
if L[i] < R[j]
Alk] = L[i], i=i+1
else
Alk] =Rljl, j=j+1
k = k+1

]

r

|28

I Sort: {4, 5, 3,8, 1, 6, 2}

Merge sort

|29

I Sort: {4, 5, 3,8, 1, 6, 2} - Split

| (4,5,3}{8, 1, 6, 2} - Split
{4, 5}{3}{8,1}{6,2} — Split
{4}{5}{3}{8}{1}{6}{2} — Merge
{4, 5}{3} {1, 8} {2, 6} — Merge
{3,4,5} {1, 2, 6,8} — Merge
{1, 2, 3,4,5, 6, 8}

Merge sort

30
Merge sort

Corectness:

I Base: Al | empty (sorted), at L&R][1]
Step: In the while loop, the smallest
element in L[] or R|] will be added
as the largest element in Al
Termination: while loop end after
all elements in L[| and R| | have
been added to A}

31
Merge sort

Run time:

| T(n) =

32
Merge sort

Run time: (recurrence relation)
I T(n) = {O(1) if n=1, otherwise...
Divide + 2T (n/2) + Merge}

T(n) = {O(1) if n=1, otherwise...
O(1) + 2T(n/2) + O(n)}

T(n) = O(n Ig n)

|33

Divide & conquer

Master's theorem: (proof 4.6)

I Fora>1,b>1,T(n)=aTm/b) + f(n)

If £(n) is... (3 cases)

O(n°) for c <log, a, T(n) is O(n'"=" ?)
®(n'°e*?), then T(n) is G(n'°¢" 2 1g n)
Q(n°) for ¢ > log a, T(n) is O(f(n))

|34

I If you have something of the form:
| T(n) = a T(/b) + f(n)
“acts like nlog>2

Case 1: f(n) grows “significantly” faster, then
overall growth just f(n)

Case 2: n'*s*? grows “significantly” faster, then
overall growth just n'oe"@

Case 3: Both grow same, tack on “lg n”:
nlogb a lg(n)

Master's theorem: TL;DR

|35

I What are the running times of...
| (1) T(n) = 4T(0/2) + 02

Master's theorem

(2) T(n) = 4T(n/4) + n?

(3) T(n) = 8T(n/2) + n*

|36

I What are the running times of...
| (1) T(n) = 4T(0/2) + 02
O(n” Ig(n))
(2) T(n) = 4T(n/4) + n?
O(n?)
(3) T(n) = 8T(n/2) + n-
O(n’)

Master's theorem

|37

Master's theorem

Important note on “significantly”:
must grow a power larger

3 — «

n° vs. n 51gn1f1cant
n° vs. n="% = “significant”

n° vs. n° Ig(n) = NOT “significant”

|38

Which works better for multi-cores:

I insertion sort or merge sort?
Why?

Divide & conquer

|39

Which works better for multi-cores:

I insertion sort or merge sort?
Why?

Divide & conquer

Merge sort! After the problem is
split, each core and individually
sort a sub-list and only merging
needs to be done synchronized

|4o

Quicksort

1. Pick a pivot (any element!)

2. Sort the list into 3 parts:
- Elements smaller than pivot
- Pivot by itself
- Elements larger than pivot

3. Recursively sort smaller & larger

|41

Quicksort

|42

I Partition(A, start, end)
I X = Alend]
1 = start — 1
for j = start to end -1
it A[j] <x
i=1+1
swap Ali] and Alj]
swap Ali+1] with Alend]

Quicksort

|43

Sort: {4, 5, 3,8, 1, 6, 2}

Quicksort

145 |
Quicksort

For quicksort, you can pick any
p1vot you want

The algorithm is just easier to write
if you pick the last element (or first)

Quicksort

|46

=3

3} —swap 2 &4

(first red N)

3} —swap 1 and 5

3}

3112, 1,3, 8, 5,6, 4}

|47 |
Quicksort

Correctness:

I Base: Initially no elements are in the
“smaller” or “larger” category
Step (loop): If Alj] < pivot it will be
added to “smaller” and “smaller”
will claim next spot, otherwise it
it stays put and claims a “larger” spot
Termination: Loop on all elements...

148 |
Quicksort

Runtime:
I Worst case?

Average?

149 |
Quicksort

Runtime:

I Worst case?
Always pick lowest/highest element,

so O(n?)

Average?

50 |
Quicksort

Runtime;:
I Worst case?
Always pick lowest/highest element,

so O(n?)

Average?
Sort about half, so same as merge
sort on average

151 |
Quicksort

Can bound number of checks against
pivot:

Let Xi,j = event Ali]| checked to Alj]
sum, ; X, = total number of checks
E[sumLj Xi,j]= SUm, E[Xi,j]

= Sum, Pr(Ali] check Aljl)

= Sum, Pr(Ali] or Alj] a pivot)

|52

= Sum, Pr(Ali] or Alj] a pivot)

Quicksort

I = sum,. (2 /j-1+1) // j-i+1 possibilties
<sum, O(lg n)
= O(n Ig n)

153 |
Quicksort

Which is better for multi core,
I quicksort or merge sort?

[f the average run times are the same,
why might you choose quicksort?

154 |
Quicksort

Which is better for multi core,

I quicksort or merge sort?
Neither, quicksort front ends the
processing, merge back ends

[f the average run times are the same,
why might you choose quicksort?

155 |
Quicksort

Which is better for multi core,

I quicksort or merge sort?
Neither, quicksort front ends the
processing, merge back ends

[f the average run times are the same,
why might you choose quicksort?
Uses less space.

56 |
Sorting!

So far we have been looking at

I comparative sorts (where we only
can compute < or >, but have no
idea on range of numbers)

The minimum running time for this
type of algorithm is ®(n 1g n)

