Sorting

THE SORTING SYSTEM

Because a school establishing cliques doesn't cause any problems.
Recurrence relationships

$$n! = \sqrt{2\pi n} \left(\frac{n}{e} \right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right)$$

If we want $\Omega(n!)$, we can shrink:

$$n! \geq 1\left(\frac{n}{e}\right)^n (1 + 0)$$

$$n! \geq \left(\frac{n}{e}\right)^n$$

Can't simplify above to n^n...

$$n! \geq e^{-n} n^n$$
Outline

Sorting!
- What's a sorting algorithm?
- Insertion sort
- Merge sort
- Divide & conquer (Master's thm)
- Quicksort
Sorting problem

Input: sequence of numbers = \(\{a_1, a_2, \ldots, a_n\} \)

Output: different order = \(\{a_1', a_2', \ldots, a_n'\} \), where \(a_1' \leq a_2' \leq \ldots \leq a_n' \)
Insertion sort

General idea:
- Examine one element at a time
- Insert into correct place in an already sorted sequence
- Repeat...
Insertion sort

Where to put a 10 of spades?
A 6 of hearts?
Insertion sort

Where to put a 10 of spades?
A 6 of hearts? Between 5 and 7
Insertion sort

Input: A[1,2, ... n]
for j = 2 to n
 i=j-1
 key = A[j] // why do we need this?
 while i > 0 AND A[i] > key
 A[i+1] = A[i]
 i = i – 1
 A[i+1] = key
Insertion sort

Sort: \{4, 5, 3, 8, 1, 6, 2\}
Insertion sort

Sort: \{4, 5, 3, 8, 1, 6, 2\}
\{4\} - done
\{4, 5\} – done
\{4, 5, 3\}, \{4,3,5\}, \{3,4,5\} – done
\{3, 4, 5, 8\} – done
\{3, 4, 5, 8, 1\}, \{3, 4, 5, 1, 8\}, \{3, 4, 1, 5, 8\}, \{3, 1, 4, 5, 8\}, \{1, 3, 4, 5, 8\} - done
Insertion sort

Sort: {4, 5, 3, 8, 1, 6, 2}
{1, 3, 4, 5, 8} – done
{1, 3, 4, 5, 8, 6}, {1, 3, 4, 5, 6, 8} - done
{1, 3, 4, 5, 6, 8, 2}, {1, 3, 4, 5, 6, 2, 8} - done
{1, 3, 4, 5, 2, 6, 8}, {1, 3, 4, 2, 5, 6, 8}
{1, 3, 2, 4, 5, 6, 8}, {1, 2, 3, 4, 5, 6, 8} - done and done
Insertion sort

Worst case runtime?

Average case?
Insertion sort

Worst case runtime?
Outer loop runs n times and inner loop runs $j-1$ times
$1+2+3+...+n-1 = ?$

Average case?
Worst case runtime?
Outer loop runs n times and inner loop runs j-1 times
1+2+3+ ... + n-1 = n(n-1)/2 = O(n^2)

Average case?
inner loop (j-1)/2 times = O(n^2)
16

Insertion sort

Correctness:
Base: Initial list is 1 element, sorted
Step: Inner loop places everything bigger than key after it and everything smaller before. Before & after will be sorted as it started sorted
Termination: Terminates after $n \ A[n]$ placed, so whole list sorted
Merge sort

1. Split pile in half

2. Sort each half (possibly recursively with merge sort)

3. Recombine lists
Merge sort

Merge(L[1, ..., \(n_l\)], R[1, ..., \(n_r\)])

\(i=1, j=1, k=1\)

while \(i < n_l\) OR \(j < n_r\)

\(\text{if } L[i] < R[j]\)

\(A[k] = L[i], i=i+1\)

\(\text{else}\)

\(A[k] = R[j], j=j+1\)

\(k = k+1\)
Merge sort

Sort: \{4, 5, 3, 8, 1, 6, 2\}
Merge sort

Sort: \{4, 5, 3, 8, 1, 6, 2\} - Split
\{4, 5, 3\}\{8, 1, 6, 2\} - Split
\{4, 5\}\{3\}\{8,1\}\{6,2\} – Split
\{4\}\{5\}\{3\}\{8\}\{1\}\{6\}\{2\} – Merge
\{4, 5\}\{3\} \{1, 8\} \{2, 6\} – Merge
\{3, 4, 5\} \{1, 2, 6, 8\} – Merge
\{1, 2, 3, 4, 5, 6, 8\}
Corectness:
Base: A[] empty (sorted), at L&R[1]
Step: In the while loop, the smallest element in L[] or R[] will be added as the largest element in A[]
Termination: while loop end after all elements in L[] and R[] have been added to A[]
Merge sort

Run time:
\[T(n) = \]
Merge sort

Run time: (recurrence relation)
\[T(n) = \begin{cases} \Theta(1) & \text{if } n=1, \\ \text{Divide} + 2T(n/2) + \text{Merge} & \text{otherwise} \end{cases} \]

\[T(n) = \Theta(1) + 2T(n/2) + \Theta(n) \]

\[T(n) = \Theta(n \log n) \]
Divide & conquer

Master's theorem: (proof 4.6)
For \(a \geq 1, b \geq 1, T(n) = a \cdot T(n/b) + f(n) \)

If \(f(n) \) is... (3 cases)
- \(O(n^c) \) for \(c < \log_b a \), \(T(n) \) is \(\Theta(n^{\log_b a}) \)
- \(\Theta(n^{\log_b a}) \), then \(T(n) \) is \(\Theta(n^{\log_b a \cdot \lg n}) \)
- \(\Omega(n^c) \) for \(c > \log_b a \), \(T(n) \) is \(\Theta(f(n)) \)
Master's theorem: TL;DR

If you have something of the form:
\[T(n) = a \cdot T(n/b) + f(n) \]

- acts like \(n^{\log_b a} \)

Case 1: \(f(n) \) grows “significantly” faster, then overall growth just \(f(n) \)

Case 2: \(n^{\log_b a} \) grows “significantly” faster, then overall growth just \(n^{\log_b a} \)

Case 3: Both grow same, tack on “\(\lg n \)”: \(n^{\log_b a} \cdot \lg(n) \)
What are the running times of...

(1) $T(n) = 4T(n/2) + n^2$

(2) $T(n) = 4T(n/4) + n^2$

(3) $T(n) = 8T(n/2) + n^2$
What are the running times of...

(1) $T(n) = 4T(n/2) + n^2$
 $O(n^2 \lg(n))$

(2) $T(n) = 4T(n/4) + n^2$
 $O(n^2)$

(3) $T(n) = 8T(n/2) + n^2$
 $O(n^3)$
Master's theorem

Important note on “significantly”: must grow a power larger

n^2 vs. $n^3 = \text{“significant”}$

n^2 vs. $n^{2.0000001} = \text{“significant”}$

n^2 vs. $n^2 \log(n) = \text{NOT “significant”}$
Divide & conquer

Which works better for multi-cores: insertion sort or merge sort? Why?
Divide & conquer

Which works better for multi-cores: insertion sort or merge sort? Why?

Merge sort! After the problem is split, each core and individually sort a sub-list and only merging needs to be done synchronized.
Quicksort

1. Pick a pivot (any element!)

2. Sort the list into 3 parts:
 - Elements smaller than pivot
 - Pivot by itself
 - Elements larger than pivot

3. Recursively sort smaller & larger
Quicksort

3 7 8 5 2 1 9 5 4

Pivot

3 7 8 4 2 1 9 5 5

Larger

3 4 2 7 8 1 9 5 5

Smaller

3 4 2 1 5 7 9 8 5

3 4 2 1 5 5 9 8 7
Quicksort

Partition(A, start, end)

x = A[end]
i = start – 1

for j = start to end -1
 if A[j] ≤ x
 i = i + 1

 swap A[i] and A[j]

swap A[i+1] with A[end]
Quicksort

Sort: \{4, 5, 3, 8, 1, 6, 2\}
Quicksort

Sort: {4, 5, 3, 8, 1, 6, 2} – Pivot = 2
{4, 5, 3, 8, 1, 6, 2} – sort 4
{4, 5, 3, 8, 1, 6, 2} – sort 5
{4, 5, 3, 8, 1, 6, 2} – sort 3
{4, 5, 3, 8, 1, 6, 2} – sort 8
{4, 5, 3, 8, 1, 6, 2} – sort 1, swap 4
{1, 5, 3, 8, 4, 6, 2} – sort 6
{1, 5, 3, 8, 4, 6, 2}, {1, 2, 5, 3, 8, 4, 6}
For quicksort, you can pick any pivot you want.

The algorithm is just easier to write if you pick the last element (or first)
Quicksort

Sort: \{4, 5, 3, 8, 1, 6, 2\} - Pivot = 3
\{4, 5, 2, 8, 1, 6, 3\} – swap 2 and 3
\{4, 5, 2, 8, 1, 6, 3\}
\{4, 5, 2, 8, 1, 6, 3\}
\{2, 5, 4, 8, 1, 6, 3\} – swap 2 & 4
\{2, 5, 4, 8, 1, 6, 3\} (first red ^)
\{2, 1, 4, 8, 5, 6, 3\} – swap 1 and 5
\{2, 1, 4, 8, 5, 6, 3\} \{2, 1, 3, 8, 5, 6, 4\}
Quicksort

Correctness:
Base: Initially no elements are in the “smaller” or “larger” category
Step (loop): If A[j] < pivot it will be added to “smaller” and “smaller” will claim next spot, otherwise it stays put and claims a “larger” spot
Termination: Loop on all elements...
Quicksort

Runtime:
Worst case?

Average?
Quicksort

Runtime:
Worst case?
Always pick lowest/highest element, so $O(n^2)$

Average?
Quicksort

Runtime:
Worst case?
Always pick lowest/highest element, so $O(n^2)$

Average?
Sort about half, so same as merge sort on average
Quicksort

Can bound number of checks against pivot:
Let \(X_{i,j} \) = event \(A[i] \) checked to \(A[j] \)
\[
\sum_{i,j} X_{i,j} = \text{total number of checks}
\]
\[
E[\sum_{i,j} X_{i,j}] = \sum_{i,j} E[X_{i,j}]
\]
\[
= \sum_{i,j} \Pr(A[i] \text{ check } A[j])
\]
\[
= \sum_{i,j} \Pr(A[i] \text{ or } A[j] \text{ a pivot})
\]
Quicksort

= \sum_{i,j} \Pr(A[i] \text{ or } A[j] \text{ a pivot})

= \sum_{i,j} \frac{2}{j-i+1} \quad // j-i+1 possibilities

< \sum_{i} O(lg n)

= O(n \ lg n)
Quicksort

Which is better for multi core, quicksort or merge sort?

If the average run times are the same, why might you choose quicksort?
Quicksort

Which is better for multi core, quicksort or merge sort? Neither, quicksort front ends the processing, merge back ends

If the average run times are the same, why might you choose quicksort?
Quicksort

Which is better for multi core, quicksort or merge sort? Neither, quicksort front ends the processing, merge back ends.

If the average run times are the same, why might you choose quicksort? Uses less space.
So far we have been looking at comparative sorts (where we only can compute \(<\) or \(>\), but have no idea on range of numbers)

The minimum running time for this type of algorithm is \(\Theta(n \log n)\)