Sorting... more

ALGORITHMS BY COMPLEXITY

MORE COMPLEX

LEFTPAD QUICKSORT GIT MERGE SELF-DRIVING CAR GOOGLE SEARCH BACKEND

SPRAWLING EXCEL SPREADSHEET BUILT UP OVER 20 YEARS BY A CHURCH GROUP IN NEBRASKA TO COORDINATE THEIR SCHEDULING
Divide & conquer

Which works better for multi-cores: insertion sort or merge sort? Why?
Divide & conquer

Which works better for multi-cores: insertion sort or merge sort? Why?

Merge sort! After the problem is split, each core and individually sort a sub-list and only merging needs to be done synchronized.
Quicksort

1. Pick a pivot (any element!)

2. Sort the list into 3 parts:
 - Elements smaller than pivot
 - Pivot by itself
 - Elements larger than pivot

3. Recursively sort smaller & larger
Quicksort

5

Pivot

Larger

Smaller
Quicksort

Partition(A, start, end)

\(x = A[end] \)

\(i = start - 1 \)

for \(j = start \) to \(end - 1 \)

if \(A[j] \leq x \)

\(i = i + 1 \)

swap \(A[i] \) and \(A[j] \)

swap \(A[i+1] \) with \(A[end] \)
Quicksort

Sort: \{4, 5, 3, 8, 1, 6, 2\}
Quicksort

Sort: \{4, 5, 3, 8, 1, 6, 2\} – Pivot = 2
\{4, 5, 3, 8, 1, 6, 2\} – sort 4
\{4, 5, 3, 8, 1, 6, 2\} – sort 5
\{4, 5, 3, 8, 1, 6, 2\} – sort 3
\{4, 5, 3, 8, 1, 6, 2\} – sort 8
\{4, 5, 3, 8, 1, 6, 2\} – sort 1, swap 4
\{1, 5, 3, 8, 4, 6, 2\} – sort 6
\{1, 5, 3, 8, 4, 6, 2\}, \{1, 2, 5, 3, 8, 4, 6\}
Quicksort

For quicksort, you can pick any pivot you want.

The algorithm is just easier to write if you pick the last element (or first)
Quicksort

Sort: \{4, 5, 3, 8, 1, 6, 2\} - Pivot = 3
\{4, 5, 2, 8, 1, 6, 3\} – swap 2 and 3
\{4, 5, 2, 8, 1, 6, 3\}
\{4, 5, 2, 8, 1, 6, 3\}
\{2, 5, 4, 8, 1, 6, 3\} – swap 2 & 4
\{2, 5, 4, 8, 1, 6, 3\} (first red ^)
\{2, 1, 4, 8, 5, 6, 3\} – swap 1 and 5
\{2, 1, 4, 8, 5, 6, 3\} \{2, 1, 3, 8, 5, 6, 4\}
Quicksort

Runtime:
Worst case?

Average?
Quicksort

Runtime:
Worst case?
Always pick lowest/highest element, so $O(n^2)$

Average?
Quicksort

Runtime:
Worst case?
Always pick lowest/highest element, so $O(n^2)$

Average?
Sort about half, so same as merge sort on average
Can bound number of checks against pivot:

Let $X_{i,j} = \text{event } A[i] \text{ checked to } A[j]$

$\sum_{i,j} X_{i,j} = \text{total number of checks}$

$E[\sum_{i,j} X_{i,j}] = \sum_{i,j} E[X_{i,j}]$

$= \sum_{i,j} \Pr(A[i] \text{ check } A[j])$

$= \sum_{i,j} \Pr(A[i] \text{ or } A[j] \text{ a pivot})$
Quicksort

\[= \sum_{i,j} \Pr(A[i] \text{ or } A[j] \text{ a pivot})\]

\[= \sum_{i,j} \left(\frac{2}{j-i+1}\right) \quad // j-i+1 \text{ possibilities}\]

\[< \sum_{i} O(\lg n)\]

\[= O(n \lg n)\]
Quicksort

Correctness:
Base: Initially no elements are in the “smaller” or “larger” category
Step (loop): If A[j] < pivot it will be added to “smaller” and “smaller” will claim next spot, otherwise it stays put and claims a “larger” spot
Termination: Loop on all elements...
Quicksort

Two cases:

1. If $A[j] > \text{pivot}$:
 - only increment j

2. If $A[j] \leq \text{pivot}$:
 - i is incremented, $A[j]$ and $A[i]$ are swapped and then j is incremented
Quicksort

Which is better for multi core, quicksort or merge sort?

If the average run times are the same, why might you choose quicksort?
Which is better for multi core, quicksort or merge sort? Neither, quicksort front ends the processing, merge back ends.

If the average run times are the same, why might you choose quicksort?
Quicksort

Which is better for multi core, quicksort or merge sort? Neither, quicksort front ends the processing, merge back ends

If the average run times are the same, why might you choose quicksort? Uses less space.
So far we have been looking at comparative sorts (where we only can compute < or >, but have no idea on range of numbers)

The minimum running time for this type of algorithm is $\Theta(n \lg n)$
Comparison sort

All n! permutations must be leaves

Worst case is tree height
A binary tree (either < or ≥) of height h has 2^h leaves:

$$2^h \geq n!$$

$$\lg(2^h) \geq \lg(n!) \quad \text{(Stirling's approx)}$$

$$h \geq (n \lg n)$$
Today we will make assumptions about the input sequence to get $O(n)$ running time sorts.

This is typically accomplished by knowing the range of numbers.
Sorting... again!
- Comparison sort
- Count sort
- Radix sort
- Bucket sort
Counting sort

1. Store in an array the number of times a number appears
2. Use above to find the last spot available for the number
3. Start from the last element, put it in the last spot (using 2.) decrease last spot array (2.)
A = input, B = output, C = count

for j = 1 to A.length

for i = 1 to k (range of numbers)
 C[i] = C[i] + C[i – 1]

for j = A.length to 1
Counting sort

$k = 5$ (numbers are 2-7)
Sort: \{2, 7, 4, 3, 6, 3, 6, 3\}

1. Find number of times each number appears

\[C = \{1, 3, 1, 0, 2, 1\}\]
2, 3, 4, 5, 6, 7
Counting sort

Sort: \{2, 7, 4, 3, 6, 3, 6, 3\}

2. Change C to find last place of each element (first index is 1)
\[C = \{1, 3, 1, 0, 2, 1\} \]
\[\{1, 4, 1, 0, 2, 1\} \]
\[\{1, 4, 5, 0, 2, 1\}\{1, 4, 5, 5, 7, 1\} \]
\[\{1, 4, 5, 5, 2, 1\}\{1, 4, 5, 5, 7, 8\}\]
Counting sort

Sort: \{2, 7, 4, 3, 6, 3, 6, 3\}

3. Go start to last, putting each element into the last spot avail.
\[C = \{1, 4, 5, 5, 7, 8\}, \text{ last in list } = 3 \]
\[2 \ 3 \ 4 \ 5 \ 6 \ 7 \]
\[\{ , , , , 3, , , , \}, \ C = \]
\[1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \]
\[\{1, 3, 5, 5, 7, 8\} \]
Counting sort

Sort: \{2, 7, 4, 3, 6, 3, 6, 3\}

3. Go start to last, putting each element into the last spot avail.

C = \{1, 4, 5, 5, 7, 8\}, last in list = 6

2 3 4 5 6 7

\{ , , , 3, , , 6, \}, C =

1 2 3 4 5 6 7 8

\{1, 3, 5, 5, 6, 8\}
Counting sort

Sort: \{2, 7, 4, 3, 6, 3, 6, 3\}

\begin{align*}
1 & \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \\
2,3,4,5,6,7 & \\
\{, , , 3, , , 6, \} & , C=\{1, 3, 5, 5, 6, 8\} \\
\{, , 3, 3, , , 6, \} & , C=\{1, 2, 5, 5, 6, 8\} \\
\{, , 3, 3, , 6, 6, \} & , C=\{1, 2, 5, 5, 5, 8\} \\
\{, 3, 3, 3, , 6, 6, \} & , C=\{1, 1, 5, 5, 5, 8\} \\
\{, 3, 3, 3, 4, 6, 6, \} & , C=\{1, 1, 4, 5, 5, 8\} \\
\{, 3, 3, 3, 4, 6, 6, 7\} & , C=\{1, 1, 4, 5, 5, 7\}
\end{align*}
Counting sort

Run time?
Counting sort

Run time?

Loop over C once, A twice

\[k + 2n = O(n) \text{ as } k \text{ a constant} \]
Counting sort

Sort: \{2, 7, 4, 3, 6, 3, 6, 3\}

\[C = \{1,3,1,0,2,1\} \rightarrow \{1, 4, 5, 5, 7, 8\} \]
instead \(C[i] = \sum_{j<i} C[j] \)

\[C' = \{0, 1, 4, 5, 5, 7\} \]
Add from start of original and increment
Counting sort is stable, which means the last element in the order of repeated numbers is preserved from input to output.

(in example, first '3' in original list is first '3' in sorted list)
Radix sort

Use a stable sort to sort from the least significant digit to most

Psuedo code: (A=input)
for i = 1 to d
 stable sort of A on digit i
Radix sort

Stable means you can draw lines without crossing for a single digit
Radix sort

Run time?
Radix sort

Run time?

$O\left(\left(\frac{b}{r} \right) (n+2^r) \right)$

b-bits total, r bits per 'digit'

d = $\frac{b}{r}$ digits

Each count sort takes $O(n + 2^r)$ runs count sort d times...

$O\left(d(n+2^r) \right) = O\left(\frac{b}{r} (n + 2^r) \right)$
Radix sort

Run time?

if $b < \lg(n)$, $\Theta(n)$
if $b \geq \lg(n)$, $\Theta(n \lg n)$
Bucket sort

1. Group similar items into a bucket
2. Sort each bucket individually
3. Merge buckets
Bucket sort

As a human, I recommend this sort if you have large n.
Bucket sort

(specific to fractional numbers)
(also assumes n buckets for n numbers)

for i = 0 to A.length
 insert A[i] into B[floor(n A[i])]
for i = 0 to B.length
 sort list B[i] with insertion sort
concatenate B[0] to B[1] to B[2]...
Bucket sort

Run time?
Bucket sort

Run time?

$\Theta(n)$