
Sorting in O(n)

1

Announcements

HW will be posted tomorrow,
due next Sunday 11:55pm

Sorting!

So far we have been looking at
comparative sorts (where we only
can compute < or >, but have no
idea on range of numbers)

The minimum running time for this
type of algorithm is Θ(n lg n)

3

Sorting!

All n! permutations must be leaves

Worst case is tree height

5

Sorting!

A binary tree (either < or >) of
height h has 2h leaves:

2h > n!
lg(2h) > lg(n!) (Stirling's approx)
h > (n lg n)

6

Comparison sort

Today we will make assumptions
about the input sequence to get
O(n) running time sorts

This is typically accomplished by
knowing the range of numbers

7

Sorting... again!
-Comparison sort
-Bucket sort
-Count sort
-Radix sort

Outline
8

Counting sort

1. Store in an array the number of
times a number appears

2. Use above to find the last spot
available for the number

3. Start from the last element,
put it in the last spot (using 2.)
decrease last spot array (2.)

9

Counting sort

A = input, B= output, C = count
for j = 1 to A.length

C[A[j]] = C[A[j]] + 1
for i = 1 to k (range of numbers)

C[i] = C[i] + C [i – 1]
for j = A.length to 1

B[C[A[j]]] = A[j]
C[A[j]] = C[A[j]] - 1

13

Counting sort

k = 5 (numbers are 2-7)
Sort: {2, 7, 4, 3, 6, 3, 6, 3}

1. Find number of times each
number appears

C = {1, 3, 1, 0, 2, 1}
 2, 3, 4, 5, 6, 7

14

Counting sort

Sort: {2, 7, 4, 3, 6, 3, 6, 3}

2. Change C to find last place of
each element (first index is 1)

C = {1, 3, 1, 0, 2, 1}
{1, 4, 1, 0, 2, 1}
{1, 4, 5, 0, 2, 1}{1, 4, 5, 5, 7, 1}
{1, 4, 5, 5, 2, 1}{1, 4, 5, 5, 7, 8}

15

Counting sort

Sort: {2, 7, 4, 3, 6, 3, 6, 3}

3. Go start to last, putting each
element into the last spot avail.

C = {1, 4, 5, 5, 7, 8}, last in list = 3
 2 3 4 5 6 7
{ , , ,3, , , , }, C =
 1 2 3 4 5 6 7 8 {1, 3, 5, 5, 7, 8}

16

Counting sort

Sort: {2, 7, 4, 3, 6, 3, 6, 3}

3. Go start to last, putting each
element into the last spot avail.

C = {1, 4, 5, 5, 7, 8}, last in list = 6
 2 3 4 5 6 7
{ , , ,3, , ,6, }, C =
 1 2 3 4 5 6 7 8 {1, 3, 5, 5, 6, 8}

17

Counting sort

Sort: {2, 7, 4, 3, 6, 3, 6, 3}
 1 2 3 4 5 6 7 8 2,3,4,5,6,7
{ , , ,3, , ,6, }, C={1,3,5,5,6,8}
{ , ,3,3, , ,6, }, C={1,2,5,5,6,8}
{ , ,3,3, ,6,6, }, C={1,2,5,5,5,8}
{ , 3,3,3, ,6,6, }, C={1,1,5,5,5,8}
{ , 3,3,3,4,6,6, }, C={1,1,4,5,5,8}
{ , 3,3,3,4,6,6,7}, C={1,1,4,5,5,7}

18

Counting sort

Run time?

19

Counting sort

Run time?

Loop over C once, A twice

k + 2n = O(n) as k a constant

20

Counting sort

Does counting sort work if you
find the first spot to put a number
in rather than the last spot?

If yes, write an algorithm for this
in loose pseudo-code

If no, explain why

21

Counting sort

Sort: {2, 7, 4, 3, 6, 3, 6, 3}

C = {1,3,1,0,2,1} -> {1,4,5,5,7,8}
instead C[i] = sum

j<i
 C[j]

C' = {0, 1, 4, 5, 5, 7}
Add from start of original and
increment

22

Counting sort

A = input, B= output, C = count
for j = 1 to A.length

C[A[j]] = C[A[j]] + 1
for i = 2 to k (range of numbers)

C'[i] = C'[i-1] + C [i – 1]
for j = A.length to 1

B[C[A[j]]] = A[j]
C[A[j]] = C[A[j]] + 1

23

Counting sort

Counting sort is stable, which
means the last element in the
order of repeated numbers is
preserved from input to output

(in example, first '3' in original list
is first '3' in sorted list)

24

Bucket sort

1. Group similar items into a
bucket

2. Sort each bucket individually

3. Merge buckets

25

Bucket sort

As a human, I recommend this
sort if you have large n

26

Bucket sort

(specific to fractional numbers)
(also assumes n buckets for n
 numbers)
for i = 1 to n // n = A.length

insert A[i] into B[floor(n A[i])+1]
for i = 1 to n // n = B.length

sort list B[i] with insertion sort
concatenate B[1] to B[2] to B[3]...

27

Bucket sort

Run time?

28

Bucket sort

Run time?

Θ(n)

Proof is gross... but with n buckets
each bucket will have on average
a constant number of elements

29

Radix sort

Use a stable sort to sort from the
least significant digit to most

Psuedo code: (A=input)
for i = 1 to d

stable sort of A on digit i

30

Radix sort

Stable means you can draw lines
without crossing for a single digit

31

Radix sort

Run time?

32

Radix sort

Run time?

O((b/r) (n+2r))
b-bits total, r bits per 'digit'
d = b/r digits
Each count sort takes O(n + 2r)
runs count sort d times...
O(d(n+2r)) = O(b/r (n + 2r))

33

Radix sort

Run time?

if b < lg(n), Θ(n)
if b > lg(n), Θ(n lg n)

34

