

Announcements

HW will be posted tomorrow, due next Sunday 11:55pm

Sorting!

So far we have been looking at comparative sorts (where we only can compute < or >, but have no idea on range of numbers)

The minimum running time for this type of algorithm is $\Theta(n \log n)$

Worst case is tree height

Sorting!

A binary tree (either < or \ge) of height h has 2^{h} leaves:

$\begin{array}{l} 2^{h} \geq n! \\ lg(2^{h}) \geq lg(n!) \quad \mbox{(Stirling's approx)} \\ h \geq (n \ lg \ n) \end{array}$

Comparison sort

Today we will make assumptions about the input sequence to get O(n) running time sorts

This is typically accomplished by knowing the range of numbers

Outline

Sorting... again! -Comparison sort -Bucket sort -Count sort -Radix sort

- Store in an array the number of times a number appears
 Use above to find the last spot available for the number
 Start from the last element,
 - put it in the last spot (using 2.) decrease last spot array (2.)

13

A = input, B = output, C = countfor j = 1 to A.length C[A[j]] = C[A[j]] + 1 for i = 1 to k (range of numbers) C[i] = C[i] + C[i-1]for j = A.length to 1 B[C[A[j]]] = A[j] C[A[j]] = C[A[j]] - 1

k = 5 (numbers are 2-7) Sort: {2, 7, 4, 3, 6, 3, 6, 3}

14

 Find number of times each number appears
C = {1, 3, 1, 0, 2, 1}
2, 3, 4, 5, 6, 7

Sort: {2, 7, 4, 3, 6, 3, 6, 3}

15

2. Change C to find last place of each element (first index is 1) $C = \{1, 3, 1, 0, 2, 1\}$ $\{1, 4, 1, 0, 2, 1\}$ $\{1, 4, 5, 0, 2, 1\}$ $\{1, 4, 5, 5, 7, 1\}$ $\{1, 4, 5, 5, 2, 1\}$ $\{1, 4, 5, 5, 7, 8\}$

Sort: {2, 7, 4, 3, 6, 3, 6, 3}

16

3. Go start to last, putting each element into the last spot avail. $C = \{1, 4, 5, 5, 7, 8\}, \text{ last in list} = 3$ 234567 {, , ,3, , , }, C = 12345678 {1, 3, 5, 5, 7, 8}

Sort: {2, 7, 4, 3, 6, 3, 6, 3}

17

3. Go start to last, putting each element into the last spot avail. $C = \{1, 4, 5, 5, 7, 8\}, \text{ last in list} = 6$ 2 3 4 5 6 7 {, , ,3, , ,6, }, C = 12345678 {1, 3, 5, 5, 6, 8}

18

Sort: {2, 7, 4, 3, 6, 3, 6, 3} 12345678 2,3,4,5,6,7 {, , ,3, , ,6, }, C={1,3,5,5,6,8} {, ,3,3, , ,6, }, C={1,2,5,5,6,8} $\{, ,3,3, ,6,6, \}, C = \{1,2,5,5,5,8\}$ $\{, 3, 3, 3, ..., 6, 6, ...\}, C = \{1, 1, 5, 5, 5, 8\}$ {, 3,3,3,4,6,6, }, C={1,1,4,5,5,8} $\{, 3, 3, 3, 4, 6, 6, 7\}, C = \{1, 1, 4, 5, 5, 7\}$

Run time?

19

Run time?

20

Loop over C once, A twice

k + 2n = O(n) as k a constant

Does counting sort work if you find the first spot to put a number in rather than the last spot?

If yes, write an algorithm for this in loose pseudo-code

If no, explain why

21

Sort: {2, 7, 4, 3, 6, 3, 6, 3}

22

C = {1,3,1,0,2,1} -> {1,4,5,5,7,8} instead C[i] = sum_{j<i} C[j]

C' = {0, 1, 4, 5, 5, 7} Add from start of original and increment

23

A = input, B = output, C = countfor j = 1 to A.length C[A[i]] = C[A[j]] + 1for i = 2 to k (range of numbers) C'[i] = C'[i-1] + C[i-1]for j = A.length to 1 B[C[A[j]]] = A[j] C[A[j]] = C[A[j]] + 1

クΔ

Counting sort is <u>stable</u>, which means the last element in the order of repeated numbers is preserved from input to output

(in example, first '3' in original list is first '3' in sorted list)

Group similar items into a bucket

2. Sort each bucket individually

3. Merge buckets

25

26

As a human, I recommend this sort if you have large n

27

(specific to fractional numbers) (also assumes n buckets for n numbers) for i = 1 to n // n = A.length insert A[i] into B[floor(n A[i])+1] for i = 1 to n // n = B.length sort list B[i] with insertion sort concatenate B[1] to B[2] to B[3]...

Run time?

28

Run time?

 $\Theta(n)$

Proof is gross... but with n buckets each bucket will have on average a constant number of elements 30

Radix sort

Use a **stable** sort to sort from the least significant digit to most

Psuedo code: (A=input) for i = 1 to d stable sort of A on digit i 31

Radix sort

Stable means you can draw lines without crossing for a single digit

Radix sort

Run time?

32

Radix sort

Run time?

33

 $O((b/r)(n+2^r))$ b-bits total, r bits per 'digit' d = b/r digitsEach count sort takes $O(n + 2^r)$ runs count sort d times... $O(d(n+2^{r})) = O(b/r(n+2^{r}))$

34

Radix sort

Run time?

if $b < lg(n), \Theta(n)$ if $b \ge lg(n), \Theta(n \lg n)$