Sorting... more

1

ALGORITHMS

by complexity

MORE COMPLEX

LEFTPAD QUICKSORT GIT MERGE SELF-DRIVING CAR GOOGLE SEARCH BACKEND

SPRAWLING EXCEL SPREADSHEET BUILT UP OVER 20 YEARS BY A CHURCH GROUP IN NEBRASKA TO COORDINATE THEIR SCHEDULING
Announcements

Homework posted, due next Sunday
3 Quicksort

Runtime:
Worst case?
Always pick lowest/highest element, so $O(n^2)$

Average?
Quicksort

Runtime:
Worst case?
Always pick lowest/highest element, so $O(n^2)$

Average?
Sort about half, so same as merge sort on average
Can bound number of checks against pivot:
Let $X_{i,j} = \text{event } A[i] \text{ checked to } A[j]$

$\sum_{i,j} X_{i,j} = \text{total number of checks}$

$E[\sum_{i,j} X_{i,j}] = \sum_{i,j} E[X_{i,j}]$

$= \sum_{i,j} \Pr(A[i] \text{ check } A[j])$

$= \sum_{i,j} \Pr(A[i] \text{ or } A[j] \text{ a pivot})$
QuickSort

\[= \sum_{i,j} \text{Pr}(A[i] \text{ or } A[j] \text{ a pivot})\]

\[= \sum_{i,j} \left(\frac{2}{j-i+1}\right) \quad \text{// } j-i+1 \text{ possibilities}\]

\[< \sum_{i} O(\log n)\]

\[= O(n \log n)\]
Quicksort

Correctness:
Base: Initially no elements are in the “smaller” or “larger” category
Step (loop): If $A[j] < \text{pivot}$ it will be added to “smaller” and “smaller” will claim next spot, otherwise it stays put and claims a “larger” spot
Termination: Loop on all elements...
Quicksort

Two cases:

Maintenance of Loop Invariant (4)

If $A[j] > \text{pivot}$:
- only increment j

If $A[j] \leq \text{pivot}$:
- i is incremented, $A[j]$ and $A[i]$ are swapped and then j is incremented
Which is better for multi core, quicksort or merge sort?

If the average run times are the same, why might you choose quicksort?
Quicksort

Which is better for multi core, quicksort or merge sort? Neither, quicksort front ends the processing, merge back ends

If the average run times are the same, why might you choose quicksort?
Quicksort

Which is better for multi core, quicksort or merge sort? Neither, quicksort front ends the processing, merge back ends

If the average run times are the same, why might you choose quicksort? Uses less space.
So far we have been looking at comparative sorts (where we only can compute ≤ or ≥, but have no idea on range of numbers)

The minimum running time for this type of algorithm is \(\Theta(n \lg n) \)
Sorting!

All $n!$ permutations must be leaves.

Worst case is tree height.
A binary tree (either < or ≥) of height h has 2^h leaves:

$$2^h \geq n!$$

$$\lg(2^h) \geq \lg(n!) \quad \text{(Stirling's approx)}$$

$$h \geq (n \lg n)$$
Today we will make assumptions about the input sequence to get $O(n)$ running time sorts. This is typically accomplished by knowing the range of numbers.
Sorting... again!
 - Count sort
 - Bucket sort
 - Radix sort
1. Store in an array the number of times a number appears
2. Use above to find the last spot available for the number
3. Start from the last element, put it in the last spot (using 2.) decrease last spot array (2.)
Counting sort

A = input, B = output, C = count

for j = 1 to A.length
 C[A[j]] = C[A[j]] + 1
for i = 1 to k (range of numbers)
 C[i] = C[i] + C[i – 1]
for j = A.length to 1
 B[C[A[j]]] = A[j]
 C[A[j]] = C[A[j]] - 1
Counting sort

You try!

\[k = \text{range} = 5 \ (\text{numbers are 2-7}) \]
Sort: \{2, 7, 4, 3, 6, 3, 6, 3\}
Counting sort

Sort: \{2, 7, 4, 3, 6, 3, 6, 3\}

1. Find number of times each number appears

 \(C = \{1, 3, 1, 0, 2, 1\}\)

 \(2, 3, 4, 5, 6, 7\)
Counting sort

Sort: \{2, 7, 4, 3, 6, 3, 6, 3\}

2. Change C to find last place of each element (first index is 1)

C = \{1, 3, 1, 0, 2, 1\}
\{1, 4, 1, 0, 2, 1\}
\{1, 4, 5, 0, 2, 1\}\{1, 4, 5, 5, 7, 1\}
\{1, 4, 5, 5, 2, 1\}\{1, 4, 5, 5, 7, 8\}
Counting sort

Sort: \{2, 7, 4, 3, 6, 3, 6, 3\}

3. Go start to last, putting each element into the last spot avail.
\[
C = \{1, 4, 5, 5, 7, 8\}, \text{ last in list } = 3
\]
\[
2 \ 3 \ 4 \ 5 \ 6 \ 7
\]
\[
\{ , , , 3, , , , \}, \ C = \{1, 3, 5, 5, 7, 8\}
\]
Counting sort

Sort: \{2, 7, 4, 3, 6, 3, 6, 3\}

3. Go start to last, putting each element into the last spot avail.
C = \{1, 4, 5, 5, 7, 8\}, last in list = 6
2 3 4 5 6 7
\{ , , , 3, , , 6, \}, C =
1 2 3 4 5 6 7 8
\{1, 3, 5, 5, 6, 8\}
Counting sort

Sort: \{2, 7, 4, 3, 6, 3, 6, 3\}

1 2 3 4 5 6 7 8 \quad 2,3,4,5,6,7
{ , , ,3, , ,6, }, C={1,3,5,5,6,8}
{ , ,3,3, , ,6, }, C={1,2,5,5,6,8}
{ , ,3,3, ,6,6, }, C={1,2,5,5,5,8}
{ , ,3,3, ,6,6, }, C={1,1,5,5,5,8}
{ , 3,3,3, ,6,6, }, C={1,1,4,5,5,8}
{ , 3,3,3,4,6,6, }, C={1,1,4,5,5,7}
{ , 3,3,3,4,6,6,7}, C={1,1,4,5,5,7}
Counting sort

Run time?
Counting sort

Run time?

Loop over C once, A twice

\[k + 2n = O(n) \text{ as } k \text{ a constant} \]
Counting sort

Does counting sort work if you find the first spot to put a number in rather than the last spot?

If yes, write an algorithm for this in loose pseudo-code

If no, explain why
Counting sort

Sort: \{2, 7, 4, 3, 6, 3, 6, 3\}

\[C = \{1, 3, 1, 0, 2, 1\} \rightarrow \{1, 4, 5, 5, 7, 8\} \]

Instead \[C[i] = \sum_{j<i} C[j] \]

\[C' = \{0, 1, 4, 5, 5, 7\} \]

Add from start of original and increment
Counting sort

A = input, B = output, C = count

for j = 1 to A.length

for i = 2 to k (range of numbers)
 C'[i] = C'[i-1] + C[i – 1]

for j = A.length to 1
Counting sort is stable, which means the last element in the order of repeated numbers is preserved from input to output.

(in example, first '3' in original list is first '3' in sorted list)
Bucket sort

1. Group similar items into a bucket

2. Sort each bucket individually

3. Merge buckets
Bucket sort

As a human, I recommend this sort if you have large n
Bucket sort

(specific to fractional numbers)
(also assumes n buckets for n numbers)

for i = 1 to n // n = A.length
 insert A[i] into B[floor(n A[i])+1]
for i = 1 to n // n = B.length
 sort list B[i] with insertion sort
Bucket sort

Run time?
Bucket sort

Run time?

\(\Theta(n) \)

Proof is gross... but with n buckets each bucket will have on average a constant number of elements
Radix sort

Use a **stable** sort to sort from the least significant digit to most significant digit.

Psuedo code: (A=input)
for i = 1 to d
 stable sort of A on digit i
// i.e. use counting sort
Radix sort

Stable means you can draw lines without crossing for a single digit.
Radix sort

Run time?
Run time?

O((b/r) (n+2^r))
b-bits total, r bits per 'digit'
d = b/r digits
Each count sort takes O(n + 2^r) runs count sort d times...
O(d(n+2^r)) = O(b/r (n + 2^r))
Radix sort

Run time?

if \(b < \log(n) \), \(\Theta(n) \)
if \(b \geq \log(n) \), \(\Theta(n \log n) \)
Heapsort
It is possible to represent binary trees as an array.
Binary tree as array

index 'i' is the parent of '2i' and '2i+1'
Binary tree as array

Is it possible to represent any tree with a constant branching factor as an array?
Binary tree as array

Is it possible to represent any tree with a constant branching factor as an array?

Yes, but the notation is awkward
Heaps

A **max heap** is a tree where the parent is larger than its children (A **min heap** is the opposite)
Heapsort

The idea behind heapsort is to:

1. Build a heap

2. Pull out the largest (root) and re-compile the heap

3. (repeat)
Heapsort

To do this, we will define subroutines:

1. Max-Heapify = maintains heap property

2. Build-Max-Heap = make sequence into a max-heap
Max-Heapify

Input: a root of two max-heaps
Output: a max-heap
Max-Heapify

Pseudocode Max-Heapify(A,i):
left = left(i) // 2*i
right = right(i) // 2*i+1
L = arg_max(A[left], A[right], A[i])
if (L not i)
 exchange A[i] with A[L]
Max-Heapify(A, L)
// now make me do it!
Max-Heapify

Runtime?
Max-Heapify

Runtime?

Obviously (is it?): $\lg n$

$T(n) = T(2/3 \ n) + O(1)$ // why?

Or...

$T(n) = T(1/2 \ n) + O(1)$
Master's theorem: (proof 4.6)
For $a \geq 1$, $b \geq 1$, $T(n) = a \cdot T(n/b) + f(n)$

If $f(n)$ is... (3 cases)
$O(n^c)$ for $c < \log_b a$, $T(n)$ is $\Theta(n^{\log_b a})$
$\Theta(n^{\log_b a})$, then $T(n)$ is $\Theta(n^{\log_b a \lg n})$
$\Omega(n^c)$ for $c > \log_b a$, $T(n)$ is $\Theta(f(n))$
Max-Heapify

Runtime?

Obviously (is it?): $\lg n$

$T(n) = T(2/3 \ n) + O(1)$ // why?
Or...
$T(n) = T(1/2 \ n) + O(1) = O(\lg n)$
Next we build a full heap from an unsorted sequence

Build-Max-Heap(A)
for i = floor(A.length/2) to 1
 Heapify(A, i)
Build-Max-Heap

Red part is already Heapified
Build-Max-Heap

Correctness:
Base: Each alone leaf is a max-heap
Step: if A[i] to A[n] are in a heap, then Heapify(A, i-1) will make i-1 a heap as well
Termination: loop ends at i=1, which is the root (so all heap)
Build-Max-Heap

Runtime?
Build-Max-Heap

Runtime?

\(O(n \lg n)\) is obvious, but we can get a better bound...

Show \(\text{ceiling}(n/2^{h+1})\) nodes at any height 'h'
Build-Max-Heap

Heapify from height 'h' takes $O(h)$

$$\sum_{h=0}^{\log n} \left\lceil \frac{n}{2^{h+1}} \right\rceil O(h) = O(n \sum_{h=0}^{\log n} \left\lceil \frac{h}{2^{h+1}} \right\rceil)$$

$$\left(\sum_{x=0}^{\infty} k x^k = \frac{x}{(1-x)^2}, x = 1/2 \right)$$

$= O(n \ 4/2) = O(n)$
Heapsort

Heapsort(A):
Build-Max-Heap(A)
for i = A.length to 2
 Swap A[1], A[i]
A.heapsize = A.heapsize – 1
Max-Heapify(A, 1)
Heapsort
Heapsort

Runtime?
Heapsort

Runtime?

Run Max-Heapify $O(n)$ times
So... $O(n \lg n)$
Heaps can also be used to implement priority queues (i.e. airplane boarding lines)

Operations supported are: Insert, Maximum, Extract-Max and Increase-key
Priority queues

Maximum(A):
return A[1]

Extract-Max(A):
max = A[1]
A.heapsize = A.heapsize – 1
Max-Heapify(A, 1), return max
Increase-key(A, i, key):
A[i] = key
while (i>1 and A[floor(i/2)] < A[i])
 swap A[i], A[floor(i/2)]
 i = floor(i/2)

Opposite of Max-Heapify... move high keys up instead of low down
Priority queues

Insert(A, key):
A.heapsize = A.heapsize + 1
A[A.heapsize] = -∞
Increase-key(A, A.heapsize, key)
Priority queues

Runtime?

Maximum =
Extract-Max =
Increase-Key =
Insert =
Priority queues

Runtime?

Maximum = $O(1)$
Extract-Max = $O(lg \ n)$
Increase-Key = $O(lg \ n)$
Insert = $O(lg \ n)$
Sorting comparisons:

<table>
<thead>
<tr>
<th>Name</th>
<th>Average</th>
<th>Worst-case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion[s,i]</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>Merge[s,p]</td>
<td>$O(n \ lg \ n)$</td>
<td>$O(n \ lg \ n)$</td>
</tr>
<tr>
<td>Heap[i]</td>
<td>$O(n \ lg \ n)$</td>
<td>$O(n \ lg \ n)$</td>
</tr>
<tr>
<td>Quick[p]</td>
<td>$O(n \ lg \ n)$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>Counting[s]</td>
<td>$O(n + k)$</td>
<td>$O(n + k)$</td>
</tr>
<tr>
<td>Radix[s]</td>
<td>$O(d(n+k))$</td>
<td>$O(d(n+k))$</td>
</tr>
<tr>
<td>Bucket[s,p]</td>
<td>$O(n)$</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>
Sorting comparisons:

https://www.youtube.com/watch?v=kPRA0W1kECg

Quick Sort (LR ptrs) - 454 comparisons, 670 array accesses, 1.00 ms delay

http://panthema.net/2013/sound-of-sorting