
Heapsort

Build-Max-Heap

Next we build a full heap from
an unsorted sequence

Build-Max-Heap(A)
for i = floor(A.length/2) to 1

Max-Heapify(A, i)

Build-Max-Heap

Red part is already Heapified

Build-Max-Heap

Correctness:
Base: Each alone leaf is a

max-heap
Step: if A[i] to A[n] are in a heap,

then Heapify(A, i-1) will make
i-1 a heap as well

Termination: loop ends at i=1,
which is the root (so all heap)

Build-Max-Heap

Runtime?

Build-Max-Heap

Runtime?

O(n lg n) is obvious, but we can
get a better bound...

Show ceiling(n/2h+1) nodes at
any level 'h', with h=0 as bottom

Build-Max-Heap

Heapify from height 'h' takes O(h)

Heapsort

Heapsort(A):
Build-Max-Heap(A)
for i = A.length to 2

Swap A[1], A[i]
A.heapsize = A.heapsize – 1
Max-Heapify(A, 1)

Heapsort

You try it!

Sort: A = [1, 6, 8, 4, 7, 3, 4]

Heapsort

First, build the heap starting here

A = [1, 6, 8, 4, 7, 3, 4]
A = [1, 6, 8, 4, 7, 3, 4]
A = [1, 7, 8, 4, 6, 3, 4]
A = [8, 7, 1, 4, 6, 3, 4] - recursive
A = [8, 7, 4, 4, 6, 3, 1] - done

Heapsort

Move first to end, then re-heapify
A = [8, 7, 4, 4, 6, 3, 1], move end
A = [1, 7, 4, 4, 6, 3, 8], heapify
A = [7, 1, 4, 4, 6, 3, 8], rec. heap
A = [7, 6, 4, 4, 1, 3, 8], move end
A = [3, 6, 4, 4, 1, 7, 8], heapify
A = [6, 3, 4, 4, 1, 7, 8], rec. heap
A = [6, 4, 4, 3, 1, 7, 8], next slide..

Heapsort

A = [6, 4, 4, 3, 1, 7, 8], move end
A = [1, 4, 4, 3, 6, 7, 8], heapify
A = [4, 4, 1, 3, 6, 7, 8], move end
A = [3, 4, 1, 4, 6, 7, 8], heapify
A = [4, 3, 1, 4, 6, 7, 8], move end
A = [1, 3, 4, 4, 6, 7, 8], heapify
A = [3, 1, 4, 4, 6, 7, 8], move end
A = [1, 3, 4, 4, 6, 7, 8], done

Heapsort

Heapsort

Runtime?

Heapsort

Runtime?

Run Max-Heapify O(n) times
So... O(n lg n)

Priority queues

Heaps can also be used to
implement priority queues
(i.e. airplane boarding lines)

Operations supported are:
Insert, Maximum, Extract-Max
and Increase-key

Priority queues

Maximum(A):
return A[1]

Extract-Max(A):
max = A[1]
A[1] = A.heapsize
A.heapsize = A.heapsize – 1
Max-Heapify(A, 1), return max

Priority queues

Increase-key(A, i, key):
A[i] = key
while (i>1 and A [floor(i/2)] < A[i])

swap A[i], A [floor(i/2)]
i = floor(i/2)

Opposite of Max-Heapify... move
high keys up instead of low down

Priority queues

Insert(A, key):
A.heapsize = A.heapsize + 1
A [A.heapsize] = -∞
Increase-key(A, A.heapsize, key)

Priority queues

Runtime?

Maximum =
Extract-Max =
Increase-Key =
Insert =

Priority queues

Runtime?

Maximum = O(1)
Extract-Max = O(lg n)
Increase-Key = O(lg n)
Insert = O(lg n)

Sorting comparisons:

Name Average Worst-case
Insertion[s,i] O(n2) O(n2)
Merge[s,p] O(n lg n) O(n lg n)
Heap[i] O(n lg n) O(n lg n)
Quick[p] O(n lg n) O(n2)
Counting[s] O(n + k) O(n + k)
Radix[s] O(d(n+k)) O(d(n+k))
Bucket[s,p] O(n) O(n2)

s=stable, p=parallelizable, i=in-place

Sorting comparisons:

https://www.youtube.com/watch?v=kPRA0W1kECg

