Heapsort

2

Announcements

Moodle had issues last night, homework due tonight at 11:55pm

Binary tree as array

It is possible to represent binary trees as an array

Binary tree as array

 index ' i ' is the parent of ' 2 i ' and '2i+1'

6

Binary tree as array

Is it possible to represent any tree with a constant branching factor as an array?

Binary tree as array

Is it possible to represent any tree with a constant branching factor as an array?

Yes, but the notation is awkward

Heaps

A max heap is a tree where the parent is larger than its children (A min heap is the opposite)

9

Heapsort

The idea behind heapsort is to:

1. Build a heap
2. Pull out the largest (root) and re-compile the heap
3. (repeat)

Heapsort

To do this, we will define subroutines:

1. Max-Heapify $=$ maintains heap property
2. Build-Max-Heap = make sequence into a max-heap

11

Max-Heapify

Input: a root of two max-heaps Output: a max-heap

12

Max-Heapify

Pseudo-code Max-Heapify(A,i): left = left(i) // 2*i right $=$ right(i) $/ / 2 * i+1$
$\mathrm{L}=\arg _\max (\mathrm{A}[\mathrm{left}], \mathrm{A}[$ right], $\mathrm{A}[\mathrm{i}])$ if (L not i)
exchange A[i] with A[L] Max-Heapify(A, L)
// now make me do it!

13

Max-Heapify

Runtime?

14

Max-Heapify

Runtime?

Obviously (is it?): $\lg n$

$$
\begin{aligned}
& T(n)=T(2 / 3 n)+O(1) / / \text { why? } \\
& O r \ldots \\
& T(n)=T(1 / 2 n)+O(1)
\end{aligned}
$$

15

Master's theorem

Master's theorem: (proof 4.6)

For $\mathrm{a} \geq 1, \mathrm{~b} \geq 1, T(\mathrm{n})=\mathrm{a} T(\mathrm{n} / \mathrm{b})+\mathrm{f}(\mathrm{n})$
If $f(n)$ is... (3 cases)
$O\left(n^{c}\right)$ for $c<\log _{b} a, T(n)$ is $\Theta\left(n^{\operatorname{logb} a}\right)$
$\Theta\left(n^{\log b}\right)$, then $T(n)$ is $\Theta\left(n^{\operatorname{logb} a} \lg n\right)$
$\Omega\left(n^{c}\right)$ for $c>\log _{b} a, T(n)$ is $\Theta(f(n))$

16

Max-Heapify

Runtime?

Obviously (is it?): $\lg n$

$$
\begin{aligned}
& T(n)=T(2 / 3 n)+O(1) / / \text { why? } \\
& \text { Or... } \\
& T(n)=T(1 / 2 n)+O(1)=O(\lg n)
\end{aligned}
$$

17

Build-Max-Heap

Next we build a full heap from an unsorted sequence

Build-Max-Heap(A)
for $i=$ floor (A.length/2) to 1 Heapify(A, i)

Build-Max-Heap

Red part is already Heapified

Build-Max-Heap

Correctness:
Base: Each alone leaf is a max-heap
Step: if $A[i]$ to $A[n]$ are in a heap, then Heapify(A, i-1) will make i-1 a heap as well
Termination: loop ends at $\mathrm{i}=1$, which is the root (so all heap)

20
 Build-Max-Heap

Runtime?

Build-Max-Heap

Runtime?

$\mathrm{O}(\mathrm{n} \lg \mathrm{n})$ is obvious, but we can get a better bound...

Show ceiling($\mathrm{n} / 2^{\mathrm{h}+1}$) nodes at any level 'h', with h=0 as bottom

22

Build-Max-Heap

Heapify from height 'h' takes O(h)

sum $_{h=0}{ }^{\lg n}$ ceiling $\left(n / 2^{h+1}\right) O(h)$
$=O\left(n \operatorname{sum}_{h=0}^{\lg n}\right.$ ceiling $\left.\left(h / 2^{h+1}\right)\right)$
$\left(\operatorname{sum}_{x=0}^{\infty} k x^{k}=x /(1-x)^{2}, x=1 / 2\right)$
$=O(n 4 / 2)=O(n)$

23

Heapsort

Heapsort(A): Build-Max-Heap(A) for $\mathrm{i}=\mathrm{A}$. length to 2 Swap A[1], A[i] A.heapsize $=$ A.heapsize -1 Max-Heapify(A, 1)

24

Heapsort

You try it!

$$
\text { Sort: } A=[1,6,8,4,7,3,4]
$$

25

Heapsort

First, build the heap starting here

$A=[1,6, \underline{8}, 4,7, \underline{3}, \underline{4}]$
$A=[1, \underline{\mathbf{6}}, 8, \underline{4}, \underline{7}, 3,4]$
$A=[\underline{1}, \underline{7}, \underline{8}, 4,6,3,4]$
$\mathrm{A}=[8,7, \underline{1}, 4,6, \underline{3}, \underline{4}]-$ recursive
$A=[8,7,4,4,6,3,1]-$ done

26

Heapsort

Move first to end, then re-heapify $A=[8,7,4,4,6,3,1]$, move end $\mathrm{A}=[\underline{1}, \underline{7}, \underline{4}, 4,6,3,8]$, heapify $A=[7, \underline{\mathbf{1}}, 4, \underline{4}, \underline{\mathbf{6}}, 3,8]$, rec. heap $A=[7,6,4,4,1,3,8]$, move end $A=[\underline{\mathbf{3}}, \underline{\mathbf{6}}, \underline{4}, 4,1,7,8]$, heapify $A=[6, \underline{3}, 4, \underline{4}, \underline{1}, 7,8]$, rec. heap A $=[6,4,4,3,1,7,8]$, next slide..

27

Heapsort

$A=[6,4,4,3,1,7,8]$, move end $A=[\underline{1}, 4, \underline{4}, 3,6,7,8]$, heapify $A=[4,4,1,3,6,7,8]$, move end $A=[\underline{3}, \underline{4}, \underline{1}, 4,6,7,8]$, heapify $A=[4,3,1,4,6,7,8]$, move end
$A=[\underline{1}, \underline{\mathbf{3}}, 4,4$,
$6,7,8]$, heapify
$A=[3,1,4,4,6,7,8]$, move end $A=[1,3,4,4,6,7,8]$, done

29

Heapsort

Runtime?

30

Heapsort

Runtime?

Run Max-Heapify $\mathrm{O}(\mathrm{n})$ times So... O(n lg n)

31

Sorting comparisons:

Name Average Worst-case Insertion[s,i] O(n²)
$\mathrm{O}\left(\mathrm{n}^{2}\right)$
Merge[s,p] Heap[i]
Quick[p]
$O(n \lg n)$
$\mathrm{O}(\mathrm{n} \lg \mathrm{n})$
$\begin{array}{ll}\mathrm{O}(\mathrm{n} \lg \mathrm{n}) & \mathrm{O}(\mathrm{n} \lg \mathrm{n} \\ \mathrm{O}(\mathrm{n} \lg \mathrm{n}) & \mathrm{O}\left(\mathrm{n}^{2}\right)\end{array}$
Counting[s] $O(n+k)$
$\mathrm{O}(\mathrm{n}+\mathrm{k})$
Radix[s] $\quad \mathrm{O}(\mathrm{d}(\mathrm{n}+\mathrm{k})) \quad \mathrm{O}(\mathrm{d}(\mathrm{n}+\mathrm{k}))$
Bucket[s,p] O(n)
$O\left(n^{2}\right)$

32

Sorting comparisons:

https://www.youtube.com/watch?v=kPRA0W1kECg
Quick Sort (LR ptrs) - 454 comparisons, 670 array accesses, 1.00 ms delay
http://panthema.net/2013/sound-of-sorting

33

Selection

Graphs for Quantitative Variables

Boxplot

34

Priority queues

Heaps can also be used to implement priority queues (i.e. airplane boarding lines)

Operations supported are: Insert, Maximum, Exctract-Max and Increase-key

35

Priority queues

Maximum(A): return A[1]

Extract-Max(A):
$\max =A[1]$
A[1] = A.heapsize
A.heapsize = A.heapsize - 1

Max-Heapify(A, 1),
return max

36

Priority queues

Increase-key(A, i, key):
A[i] = key
while (i>1 and A [floor(i/2)] < A[i]) swap A[i], A [floor(i/2)] i = floor(i/2)

Opposite of Max-Heapify... move high keys up instead of low down

37

Priority queues

Insert(A, key):
A.heapsize = A.heapsize +1

A [A.heapsize] = $-\infty$
Increase-key(A, A.heapsize, key)

38

Priority queues

Runtime?

Maximum =
Extract-Max =
Increase-Key = Insert =

39

Priority queues

Runtime?

Maximum $=O(1)$

 Extract-Max = O(lg n) Increase-Key = O(lg n) Insert = O(lg n)
Selection

Selection given a set of (distinct) elements, finding the element larger than i-1 other elements

Selection with... $\mathrm{i}=\mathrm{n}$ is finding maximum $\mathrm{i}=1$ is finding minimum $\mathrm{i}=\mathrm{n} / 2$ is finding median

41

Maximum

Selection for any i is $O(n)$ runtime

Find max in $\mathrm{O}(\mathrm{n})$?

Maximum

Selection for any i is $O(n)$ runtime

Find max in $O(n) ?$
$\max =A[1]$
for $\mathrm{i}=2$ to A.length
if $(A[i]>\max)$
$\max =\mathrm{A}[\mathrm{i}]$

43

Max and min

It takes about n comparisons to find max

How many would it take to find both max and min at same time?

44

Max and min

It takes about n comparisons to find max

How many would it take to find both max and min at same time?

Naïve $=2 n$
Smarter $=3 / 2 n$

Max and min

$\operatorname{smin}=\min (A[1], A[2])$ $\operatorname{smax}=\max (A[1], A[2])$ for $i=3$ to A.length step 2
if ($A[i]>A[i+1])$
$\operatorname{smax}=\max (A[i], s m a x)$ $\operatorname{smin}=\min (A[i+1], s m i n)$
else
$\operatorname{smax}=\max (A[i+1]$, smax $)$
$s \min =\min (A[i], s m i n)$

Randomized selection

Remember quicksort?

Randomized selection

To select i:

1. Partition on random element
2. If partitioned element i, end otherwise recursively partition on side with i

48

Randomized selection

$\{2,6,4,7,8,4,7,2\}$ find $i=5$ Pick pivot $=4$
$\{2,6,4,7,8,2,7,4\}$
$\{2,6,4,7,8,2,7,4\}$
$\{2,6,4,7,8,2,7,4\}$
$\{2,4,6,7,8,2,7,4\}$
$\{2,4,6,7,8,2,7,4\}$
$\{2,4,6,7,8,2,7,4\}$

Randomized selection

$$
\begin{aligned}
& \begin{array}{l}
\{2,4,6,7,8,2,7,4\} \\
\{2,4,2,7,8,6,7,4\} \\
\{2,4,2,7,8,6,7,4\} \\
\{2,4,2,4,7,8,6,7\} \\
1,2,3,4,5,6,7,8
\end{array} \\
& i=5 \text { on green side, recurse }
\end{aligned}
$$

50

Randomized selection

$$
\begin{aligned}
& \{7,8,6,7\} \text { pick pivot }=6 \\
& \{7,8,7,6\} \\
& \{7,8,7,6\} \\
& \{7,8,7,6\} \\
& \{7,8,7,6\} \\
& \{6,7,8,7\} \\
& 5,6,7,8 \\
& \text { found } i=5, \text { value }=6
\end{aligned}
$$

51

Randomized selection

Quicksort runs in $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$, but we only have sort one side and sometimes stop early

This gives randomized selection $\mathrm{O}(\mathrm{n})$ running time (proof in book, I punt)

52

Randomized selection

Just like quicksort, the worst case running time is $\mathrm{O}\left(\mathrm{n}^{2}\right)$

This happens when you want to find the min, but always partition on the max

53

Select

A worst case $O(n)$ selection is given by Select: (see code)

1. Make $n / 5$ groups of 5 and find their medians (via sorting)
2. Recursively find the median of the $n / 5$ medians (using Select)
3. Partition on median of medians
4. Recursively Select correct side

54

Select

Proof of the general case:
$T(n)=\operatorname{sum}_{i} T\left(k_{i} n+q_{i}\right)+O(n)$
// assume $T(n)$ is $O(n)$
$T(n)=c n-c n+c \operatorname{sum}_{i}\left(k_{i} n+q_{i}\right)+a n$
so $T(n)$ is $O(n)$ if:
$-c n+c \operatorname{sum}_{i}\left(k_{i} n+q_{i}\right)+a n \leq 0$
$a n \leq c\left(n\left(1-\operatorname{sum}_{i} k_{i}\right)-\operatorname{sum}_{i} q_{i}\right)$

55

Select

$a n \leq c\left(n\left(1-\operatorname{sum}_{i} k_{i}\right)-\operatorname{sum}_{i} q_{i}\right)$ an/(n(1-sum $\left.{ }_{i} k_{i}\right)-$ sum $\left._{i} q_{i}\right) \leq c$ $/ /$ Pick $n>2\left(\operatorname{sum}_{i} q_{i} /\left(1-\operatorname{sum}_{i} k_{i}\right)\right)$ $\mathrm{c} \geq$ a $2\left(\right.$ sum $_{\mathrm{i}} \mathrm{q}_{\mathrm{i}} /\left(1-\right.$ sum $\left.\left._{\mathrm{i}} \mathrm{k}_{\mathrm{i}}\right)\right) /\left(\right.$ sum $\left._{\mathrm{i}} \mathrm{q}_{\mathrm{i}}\right)$
$c \geq 2 \mathrm{a} /\left(1-\operatorname{sum}_{i} \mathrm{k}_{\mathrm{i}}\right)$
Done as sum $\mathrm{i}_{\mathrm{i}}<1$

56

Select

Select runs in:

$T(n)=T(\operatorname{ceiling}(n / 5))$ $+T(7 n / 10+6)+O(n)$

By the previous proof this is $O(n)$: ceiling(n/5) $+7 n / 10+6$
$\leq n / 5+1+7 n / 10+6=9 n / 10+7$ $\operatorname{sum}_{i} k_{i}=9 / 10<1$, done

57

Select

Does this work for making:

(1) $n / 3$ groups of 3 ?
(2) $n / 7$ groups of 7 ?
(3) n/9 groups of 9 ?

