
Heapsort

1

Moodle had issues last night,
homework due tonight at 11:55pm

Announcements
2

Binary tree as array

It is possible to represent
binary trees as an array

1|2|3|4|5|6|7|8|9|10

4

Binary tree as array

index 'i' is the parent of '2i' and
'2i+1'

1|2|3|4|5|6|7|8|9|10

5

Binary tree as array

Is it possible to represent
any tree with a constant
branching factor as an array?

6

Binary tree as array

Is it possible to represent
any tree with a constant
branching factor as an array?

Yes, but the notation is awkward

7

Heaps

A max heap is a tree where the
parent is larger than its children
(A min heap is the opposite)

8

Heapsort

The idea behind heapsort is to:

1. Build a heap

2. Pull out the largest (root)
and re-compile the heap

3. (repeat)

9

Heapsort

To do this, we will define
subroutines:

1. Max-Heapify = maintains heap
property

2. Build-Max-Heap = make
sequence into a max-heap

10

Max-Heapify

Input: a root of two max-heaps
Output: a max-heap

11

Max-Heapify

Pseudo-code Max-Heapify(A,i):
left = left(i) // 2*i
right = right(i) // 2*i+1
L = arg_max(A[left], A[right], A[i])
if (L not i)

exchange A[i] with A[L]
Max-Heapify(A, L)

// now make me do it!

12

Max-Heapify

Runtime?

13

Max-Heapify

Runtime?

Obviously (is it?): lg n

T(n) = T(2/3 n) + O(1) // why?
 Or...
T(n) = T(1/2 n) + O(1)

14

Master's theorem

Master's theorem: (proof 4.6)
For a > 1, b > 1,T(n) = a T(n/b) + f(n)

If f(n) is... (3 cases)
O(nc) for c < log

b
 a, T(n) is Θ(nlogb a)

Θ(nlogb a), then T(n) is Θ(nlogb a lg n)
Ω(nc) for c > log

b
 a, T(n) is Θ(f(n))

15

Max-Heapify

Runtime?

Obviously (is it?): lg n

T(n) = T(2/3 n) + O(1) // why?
 Or...
T(n) = T(1/2 n) + O(1) = O(lg n)

16

Build-Max-Heap

Next we build a full heap from
an unsorted sequence

Build-Max-Heap(A)
for i = floor(A.length/2) to 1

Heapify(A, i)

17

Build-Max-Heap

Red part is already Heapified

18

Build-Max-Heap

Correctness:
Base: Each alone leaf is a

max-heap
Step: if A[i] to A[n] are in a heap,

then Heapify(A, i-1) will make
i-1 a heap as well

Termination: loop ends at i=1,
which is the root (so all heap)

19

Build-Max-Heap

Runtime?

20

Build-Max-Heap

Runtime?

O(n lg n) is obvious, but we can
get a better bound...

Show ceiling(n/2h+1) nodes at
any level 'h', with h=0 as bottom

21

Build-Max-Heap

Heapify from height 'h' takes O(h)

sum
h=0

lg n ceiling(n/2h+1) O(h)
=O(n sum

h=0
lg n ceiling(h/2h+1))

(sum
x=0

∞ k xk = x/(1-x)2, x=1/2)
=O(n 4/2) = O(n)

22

Heapsort

Heapsort(A):
Build-Max-Heap(A)
for i = A.length to 2

Swap A[1], A[i]
A.heapsize = A.heapsize – 1
Max-Heapify(A, 1)

23

Heapsort

You try it!

Sort: A = [1, 6, 8, 4, 7, 3, 4]

24

Heapsort

First, build the heap starting here

A = [1, 6, 8, 4, 7, 3, 4]
A = [1, 6, 8, 4, 7, 3, 4]
A = [1, 7, 8, 4, 6, 3, 4]
A = [8, 7, 1, 4, 6, 3, 4] - recursive
A = [8, 7, 4, 4, 6, 3, 1] - done

25

Heapsort

Move first to end, then re-heapify
A = [8, 7, 4, 4, 6, 3, 1], move end
A = [1, 7, 4, 4, 6, 3, 8], heapify
A = [7, 1, 4, 4, 6, 3, 8], rec. heap
A = [7, 6, 4, 4, 1, 3, 8], move end
A = [3, 6, 4, 4, 1, 7, 8], heapify
A = [6, 3, 4, 4, 1, 7, 8], rec. heap
A = [6, 4, 4, 3, 1, 7, 8], next slide..

26

Heapsort

A = [6, 4, 4, 3, 1, 7, 8], move end
A = [1, 4, 4, 3, 6, 7, 8], heapify
A = [4, 4, 1, 3, 6, 7, 8], move end
A = [3, 4, 1, 4, 6, 7, 8], heapify
A = [4, 3, 1, 4, 6, 7, 8], move end
A = [1, 3, 4, 4, 6, 7, 8], heapify
A = [3, 1, 4, 4, 6, 7, 8], move end
A = [1, 3, 4, 4, 6, 7, 8], done

27

Heapsort
28

Heapsort

Runtime?

29

Heapsort

Runtime?

Run Max-Heapify O(n) times
So... O(n lg n)

30

Sorting comparisons:

Name Average Worst-case
Insertion[s,i] O(n2) O(n2)
Merge[s,p] O(n lg n) O(n lg n)
Heap[i] O(n lg n) O(n lg n)
Quick[p] O(n lg n) O(n2)
Counting[s] O(n + k) O(n + k)
Radix[s] O(d(n+k)) O(d(n+k))
Bucket[s,p] O(n) O(n2)

31

Sorting comparisons:

https://www.youtube.com/watch?v=kPRA0W1kECg

32

Selection

33

Priority queues

Heaps can also be used to
implement priority queues
(i.e. airplane boarding lines)

Operations supported are:
Insert, Maximum, Exctract-Max
and Increase-key

34

Priority queues

Maximum(A):
return A[1]

Extract-Max(A):
max = A[1]
A[1] = A.heapsize
A.heapsize = A.heapsize – 1
Max-Heapify(A, 1), return max

35

Priority queues

Increase-key(A, i, key):
A[i] = key
while (i>1 and A [floor(i/2)] < A[i])

swap A[i], A [floor(i/2)]
i = floor(i/2)

Opposite of Max-Heapify... move
high keys up instead of low down

36

Priority queues

Insert(A, key):
A.heapsize = A.heapsize + 1
A [A.heapsize] = -∞
Increase-key(A, A.heapsize, key)

37

Priority queues

Runtime?

Maximum =
Extract-Max =
Increase-Key =
Insert =

38

Priority queues

Runtime?

Maximum = O(1)
Extract-Max = O(lg n)
Increase-Key = O(lg n)
Insert = O(lg n)

39

Selection

Selection given a set of (distinct)
elements, finding the element
larger than i – 1 other elements

Selection with...
i=n is finding maximum
i=1 is finding minimum
i=n/2 is finding median

40

Maximum

Selection for any i is O(n) runtime

Find max in O(n)?

41

Maximum

Selection for any i is O(n) runtime

Find max in O(n)?

max = A[1]
for i = 2 to A.length

if (A[i] > max)
max = A[i]

42

Max and min

It takes about n comparisons
to find max

How many would it take to find
both max and min at same time?

43

Max and min

It takes about n comparisons
to find max

How many would it take to find
both max and min at same time?

Naïve = 2n
Smarter = 3/2 n

44

Max and min

smin = min(A[1], A[2])
smax = max(A[1], A[2])
for i = 3 to A.length step 2

if (A[i] > A[i+1])
smax = max(A[i], smax)
smin = min(A[i+1], smin)

else
smax = max(A[i+1], smax)
smin = min(A[i], smin)

45

Randomized selection

Remember quicksort?

Partition
step

46

Randomized selection

To select i:

1. Partition on random element

2. If partitioned element i, end
otherwise recursively partition
on side with i

47

Randomized selection

{2, 6, 4, 7, 8, 4, 7, 2} find i = 5
Pick pivot = 4
{2, 6, 4, 7, 8, 2, 7, 4}
{2, 6, 4, 7, 8, 2, 7, 4}
{2, 6, 4, 7, 8, 2, 7, 4}
{2, 4, 6, 7, 8, 2, 7, 4}
{2, 4, 6, 7, 8, 2, 7, 4}
{2, 4, 6, 7, 8, 2, 7, 4}

48

Randomized selection

{2, 4, 6, 7, 8, 2, 7, 4}
{2, 4, 2, 7, 8, 6, 7, 4}
{2, 4, 2, 7, 8, 6, 7, 4}
{2, 4, 2, 4, 7, 8, 6, 7}
 1, 2, 3, 4, 5, 6, 7, 8

i=5 on green side, recurse

49

Randomized selection

{7, 8, 6, 7} pick pivot = 6
{7, 8, 7, 6}
{7, 8, 7, 6}
{7, 8, 7, 6}
{7, 8, 7, 6}
{6, 7, 8, 7}
 5, 6, 7, 8

found i=5, value = 6

50

Randomized selection

Quicksort runs in O(n lg n), but
we only have sort one side
and sometimes stop early

This gives randomized selection
O(n) running time
(proof in book, I punt)

51

Randomized selection

Just like quicksort, the worst case
running time is O(n2)

This happens when you want to
find the min, but always partition
on the max

52

Select

A worst case O(n) selection is
given by Select: (see code)
1. Make n/5 groups of 5 and find

their medians (via sorting)
2. Recursively find the median of

the n/5 medians (using Select)
3. Partition on median of medians
4. Recursively Select correct side

53

Select

Proof of the general case:
T(n) = sum

i
 T(k

i
n + q

i
) + O(n)

// assume T(n) is O(n)
T(n) = cn – cn+c sum

i
(k

i
n + q

i
)+an

so T(n) is O(n) if:
– cn+c sum

i
(k

i
n + q

i
)+an < 0

an < c(n (1 - sum
i
 k

i
) - sum

i
 q

i
)

54

Select

an < c(n (1 - sum
i
 k

i
) - sum

i
 q

i
)

an/(n(1-sum
i
 k

i
) -sum

i
 q

i
) < c

// Pick n > 2(sum
i
 q

i
/(1 – sum

i
 k

i
))

c>a 2(sum
i
 q

i
/(1-sum

i
 k

i
))/(sum

i
 q

i
)

c > 2 a / (1- sum
i
 k

i
)

Done as sum
i
 k

i
 < 1

55

Select

Select runs in:
T(n) = T(ceiling(n/5))
 +T(7n/10 + 6) + O(n)

By the previous proof this is O(n):
ceiling(n/5) + 7n/10 + 6

 < n/5 + 1 + 7n/10 + 6 = 9n/10 + 7
 sum

i
 k

i
 = 9/10 < 1, done

56

Select

Does this work for making:

(1) n/3 groups of 3?

(2) n/7 groups of 7?

(3) n/9 groups of 9?

57

