

Announcements

Moodle had issues last night, homework due tonight at 11:55pm

It is possible to represent binary trees as an array

index 'i' is the parent of '2i' and '2i+1'

Is it possible to represent any tree with a constant branching factor as an array?

Is it possible to represent any tree with a constant branching factor as an array?

Yes, but the notation is awkward

Heaps

A <u>max heap</u> is a tree where the parent is larger than its children (A <u>min heap</u> is the opposite)

The idea behind heapsort is to:

- 1. Build a heap
- 2. Pull out the largest (root) and re-compile the heap
- 3. (repeat)

Heapsort

To do this, we will define subroutines:

1. Max-Heapify = maintains heap property

2. Build-Max-Heap = make sequence into a max-heap Max-Heapify

11

Input: a root of two max-heaps Output: a max-heap

Max-Heapify

12

Pseudo-code Max-Heapify(A,i): left = left(i) // 2*i right = right(i) // 2*i+1 L = arg_max(A[left], A[right], A[i]) if (L not i) exchange A[i] with A[L] Max-Heapify(A, L) // now make me do it!

Max-Heapify

Runtime?

Max-Heapify

Runtime?

Obviously (is it?): lg n

T(n) = T(2/3 n) + O(1) // why?Or... T(n) = T(1/2 n) + O(1)

Master's theorem

15

Master's theorem: (proof 4.6) For $a \ge 1$, $b \ge 1$, T(n) = a T(n/b) + f(n)

If f(n) is... (3 cases) $O(n^c)$ for c < log_b a, T(n) is $\Theta(n^{\log b a})$ $\Theta(n^{\log b a})$, then T(n) is $\Theta(n^{\log b a} \log n)$ $\Omega(n^c)$ for c > log_b a, T(n) is $\Theta(f(n))$

Max-Heapify

Runtime?

Obviously (is it?): lg n

T(n) = T(2/3 n) + O(1) // why?Or... $T(n) = T(1/2 n) + O(1) = O(\lg n)$

1 /

Next we build a full heap from an unsorted sequence

Build-Max-Heap(A) for i = floor(A.length/2) to 1 Heapify(A, i)

18

Red part is already Heapified

19

Correctness: Base: Each alone leaf is a max-heap Step: if A[i] to A[n] are in a heap, then Heapify(A, i-1) will make i-1 a heap as well Termination: loop ends at i=1, which is the root (so all heap)

Runtime?

20

Runtime?

21

O(n lg n) is obvious, but we can get a better bound...

Show ceiling($n/2^{h+1}$) nodes at any level 'h', with h=0 as bottom

22

Heapify from height 'h' takes O(h)

 $sum_{h=0}^{lg n} ceiling(n/2^{h+1}) O(h)$ =O(n sum_{h=0}^{lg n} ceiling(h/2^{h+1})) (sum_{x=0}^{\infty} k x^{k} = x/(1-x)^{2}, x=1/2) =O(n 4/2) = O(n)

Heapsort

23

Heapsort(A): Build-Max-Heap(A) for i = A.length to 2 Swap A[1], A[i] A.heapsize = A.heapsize -1Max-Heapify(A, 1)

Heapsort

You try it!

Sort: A = [1, 6, 8, 4, 7, 3, 4]

Heapsort

25

First, build the heap starting here

 $A = [1, 6, \underline{8}, 4, 7, \underline{3}, \underline{4}]$ $A = [1, \underline{6}, 8, \underline{4}, 7, 3, 4]$ $A = [\underline{1}, 7, \underline{8}, 4, 6, 3, 4]$ $A = [8, 7, \underline{1}, 4, 6, \underline{3}, \underline{4}] - \text{recursive}$ A = [8, 7, 4, 4, 6, 3, 1] - done

Heapsort

Move first to end, then re-heapify A = [8, 7, 4, 4, 6, 3, 1], move end A = [1, 7, 4, 4, 6, 3, 8], heapify A = [7, <u>1</u>, 4, <u>4</u>, <u>6</u>, 3, <u>8</u>], rec. heap A = [7, 6, 4, 4, 1, 3, 8], move end A = [<u>3</u>, <u>6</u>, <u>4</u>, 4, 1, <u>7</u>, <u>8</u>], heapify A = [6, <u>3</u>, 4, <u>4</u>, <u>1</u>, <u>7</u>, <u>8</u>], rec. heap A = [6, 4, 4, 3, 1, 7, 8], next slide...

Heapsort

27

A = [6, 4, 4, 3, 1, 7, 8], move end A = [1, 4, 4, 3, 6, 7, 8], heapify A = [4, 4, 1, 3, 6, 7, 8], move end A = [<u>3</u>, <u>4</u>, <u>1</u>, <u>4</u>, <u>6</u>, <u>7</u>, <u>8</u>], heapify A = [4, 3, 1, 4, 6, 7, 8], move end A = [1, 3, 4, 4, 6, 7, 8], heapify A = [3, 1, 4, 4, 6, 7, 8], move end A = [1, 3, 4, 4, 6, 7, 8], done

Heapsort

Runtime?

Heapsort

Runtime?

Run Max-Heapify O(n) times So... O(n lg n)

Sorting comparisons:

31

Average Worst-case Name **O(n²)** Insertion[s,i] **O(n²)** Merge[s,p] $O(n \log n)$ $O(n \lg n)$ Heap[i] O(n lg n) O(n lg n) Quick[p] $O(n \log n)$ **O(n²)** O(n + k)Counting[s] O(n + k)O(d(n+k))Radix[s] O(d(n+k))Bucket[s,p] **O(n²)** O(n)

Sorting comparisons:

https://www.youtube.com/watch?v=kPRA0W1kECg

32

Selection

Heaps can also be used to implement priority queues (i.e. airplane boarding lines)

Operations supported are: Insert, Maximum, Exctract-Max and Increase-key

Maximum(A): return A[1]

35

```
Extract-Max(A):
max = A[1]
A[1] = A.heapsize
A.heapsize = A.heapsize - 1
Max-Heapify(A, 1), return max
```

36

Increase-key(A, i, key): A[i] = key while (i>1 and A [floor(i/2)] < A[i]) swap A[i], A [floor(i/2)] i = floor(i/2)

Opposite of Max-Heapify... move high keys up instead of low down

37

Insert(A, key): A.heapsize = A.heapsize + 1 A [A.heapsize] = $-\infty$ Increase-key(A, A.heapsize, key)

Runtime?

38

Maximum = Extract-Max = Increase-Key = Insert =

Runtime?

39

Maximum = O(1)Extract-Max = $O(\lg n)$ Increase-Key = $O(\lg n)$ Insert = $O(\lg n)$

Selection

<u>Selection</u> given a set of (distinct) elements, finding the element larger than i - 1 other elements

Selection with... i=n is finding maximum i=1 is finding minimum i=n/2 is finding median

Maximum

Selection for any i is O(n) runtime

Find max in O(n)?

Maximum

Selection for any i is O(n) runtime

Find max in O(n)?

max = A[1]
for i = 2 to A.length
if (A[i] > max)
 max = A[i]

Max and min

It takes about n comparisons to find max

'

How many would it take to find both max and min at same time?

Max and min

It takes about n comparisons to find max

How many would it take to find both max and min at same time?

Naïve = 2nSmarter = 3/2 n Max and min

smin = min(A[1], A[2]) smax = max(A[1], A[2])for i = 3 to A.length step 2 if (A[i] > A[i+1]) smax = max(A[i], smax) smin = min(A[i+1], smin)else

45

smax = max(A[i+1], smax)
smin = min(A[i], smin)

Remember quicksort?

- To select i:
- 1. Partition on random element
- If partitioned element i, end otherwise recursively partition on side with i

48

{2, 6, 4, 7, 8, 4, 7, 2} find i = 5 Pick pivot = 4 $\{2, 6, 4, 7, 8, 2, 7, 4\}$ $\{2, 6, 4, 7, 8, 2, 7, 4\}$ $\{2, 6, 4, 7, 8, 2, 7, 4\}$ $\{2, 4, 6, 7, 8, 2, 7, 4\}$ $\{2, 4, 6, 7, 8, 2, 7, 4\}$ $\{2, 4, 6, 7, 8, 2, 7, 4\}$

49

i=5 on green side, recurse

$\{7, 8, 6, 7\}$ pick pivot = 6 **{7, 8, 7, 6} {7, 8, 7, 6}** {7, 8, 7, 6} {7, 8, 7, 6} {6, 7, 8, 7} 5, 6, 7, 8 found i=5, value = 6

51

Quicksort runs in O(n lg n), but we only have sort one side and sometimes stop early

This gives randomized selection O(n) running time (proof in book, I punt)

52

Just like quicksort, the worst case running time is $O(n^2)$

This happens when you want to find the min, but always partition on the max

Select

53

A worst case O(n) selection is given by Select: (see code) 1. Make n/5 groups of 5 and find their medians (via sorting) 2. Recursively find the median of the n/5 medians (using Select) 3. Partition on median of medians 4. Recursively Select correct side

Select

Proof of the general case: $T(n) = sum_{i} T(k_{i}n + q_{i}) + O(n)$ // assume T(n) is O(n) $T(n) = cn - cn + c sum_i(k_in + q_i) + an$ so T(n) is O(n) if: $- cn+c sum_i(k_in + q_i)+an \le 0$ an \leq c(n (1 - sum_i k_i) - sum_i q_i)

Select

55

an \leq c(n (1 - sum_i k_i) - sum_i q_i) $an/(n(1-sum_i k_i) - sum_i q_i) \le c$ // Pick n > 2(sum, $q_i/(1 - sum, k_i))$ $c \ge a 2(sum_i q_i/(1-sum_i k_i))/(sum_i q_i)$ $c \ge 2 a / (1 - sum_i k_i)$ Done as sum, k, < 1

Select runs in: T(n) = T(ceiling(n/5))+T(7n/10 + 6) + O(n)

56

By the previous proof this is O(n): ceiling(n/5) + 7n/10 + 6 \leq n/5 + 1 + 7n/10 + 6 = 9n/10 + 7 sum_i k_i = 9/10 < 1, done

(3) n/9 groups of 9?

(2) n/7 groups of 7?

(1) n/3 groups of 3?

5/

Does this work for making:

Select