Selection

Graphs for Quantitative Variables

Boxplot

2

Selection

Selection given a set of (distinct) elements, finding the element larger than i-1 other elements

Selection with...
$\mathrm{i}=\mathrm{n}$ is finding maximum $\mathrm{i}=1$ is finding minimum $\mathrm{i}=\mathrm{n} / 2$ is finding median

3

Maximum

Selection for any i is $O(n)$ runtime

Find max in $O(n) ?$

Maximum

Selection for any i is $O(n)$ runtime

Find max in $\mathrm{O}(\mathrm{n})$?
$\max =\mathrm{A}[1]$
for $\mathrm{i}=2$ to A.length
if ($A[i]>\max$)
$\max =\mathrm{A}[\mathrm{i}]$

5

Max and min

It takes about n comparisons to find max

How many would it take to find both max and min at same time?

6

Max and min

It takes about n comparisons to find max

How many would it take to find both max and min at same time?

Naïve $=2 n$
Smarter $=3 / 2 n$

Max and min

$\operatorname{smin}=\min (A[1], A[2])$ $\operatorname{smax}=\max (A[1], A[2])$ for $i=3$ to A.length step 2
if ($A[i]>A[i+1])$
smax $=\max (A[i]$, smax $)$ $\operatorname{smin}=\min (A[i+1], s m i n)$
else
$\operatorname{smax}=\max (A[i+1]$, smax $)$
$s \min =\min (A[i], s m i n)$

Randomized selection

Remember quicksort?

9

Randomized selection

To select i :

1. Partition on random element
2. If partitioned element i, end otherwise recursively partition on side with i

10

Randomized selection

$\{2,6,4,7,8,4,7,2\}$ find $i=5$

11

Randomized selection

$\{2,6,4,7,8,4,7,2\}$ find $i=5$ Pick pivot $=4$
$\{2,6,4,7,8,2,7,4\}$ $\{2,6,4,7,8,2,7,4\}$ $\{2,6,4,7,8,2,7,4\}$ $\{2,4,6,7,8,2,7,4\}$ $\{2,4,6,7,8,2,7,4\}$ $\{2,4,6,7,8,2,7,4\}$

12

Randomized selection

$$
\begin{array}{r}
\{2,4,6,7,8,2,7,4\} \\
\{2,4,2,7,8,6,7,4\} \\
\{2,4,2,7,8,6,7,4\} \\
\{2,4,2,4,7,8,6,7\} \\
1,2,3,4,5,6,7,8
\end{array}
$$

i=5 on green side, recurse

13

Randomized selection

$\{7,8,6,7\}$ pick pivot $=6$ $\{7,8,7,6\}$ $\{7,8,7,6\}$ $\{7,8,7,6\}$ $\{7,8,7,6\}$
 $\{6,7,8,7\}$
 $5,6,7,8$
 found $i=5$, value $=6$

14

Randomized selection

Quicksort runs in $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$, but we only have sort one side and sometimes stop early

This gives randomized selection $\mathrm{O}(\mathrm{n})$ running time (proof in book, I punt)

15

Randomized selection

Just like quicksort, the worst case running time is $\mathrm{O}\left(\mathrm{n}^{2}\right)$

This happens when you want to find the min, but always partition on the max

16

Select

A worst case $O(n)$ selection is given by Select: (see code)

1. Make $n / 5$ groups of 5 and find their medians (via sorting)
2. Recursively find the median of the $n / 5$ medians (using Select)
3. Partition on median of medians 4. Recursively Select correct side

Select

Proof of the general case:

$T(n)=\sum_{i} T\left(k_{i} \cdot n+q_{i}\right)+O(n)$
// assume $T(\mathrm{n})$ is $\mathrm{O}(\mathrm{n})$
$T(n)=c \cdot n-c \cdot n+c \sum_{i}\left(k_{i} \cdot n+q_{i}\right)+a \cdot n$ If $\mathrm{T}(\mathrm{n})$ is $\mathrm{O}(\mathrm{n})$ then...
$-c \cdot n+c \sum_{i}\left(k_{i} \cdot n+q_{i}\right)+a \cdot n \leq 0$
$a \cdot n \leq c\left(n\left(1-\sum_{i} k_{i}\right)-\sum_{i} q_{i}\right)$

Select

$$
\begin{aligned}
& a \cdot n \leq c\left(n\left(1-\sum_{i} k_{i}\right)-\sum_{i} q_{i}\right) \\
& \frac{a \cdot n}{n\left(1-\sum_{i} k_{i}\right)-\sum_{i} q_{i}} \leq c
\end{aligned}
$$

// Pick $\mathrm{n}>2\left(\operatorname{sum}_{\mathrm{i}} \mathrm{q}_{\mathrm{i}} /\left(1-\operatorname{sum}_{\mathrm{i}} \mathrm{k}_{\mathrm{i}}\right)\right)$
$\frac{2 a\left(\sum q_{i} /\left(1-\sum_{i} k_{i}\right)\right.}{\sum_{i} q_{i}} \leq c$
$\frac{2 a}{1-\sum_{i} k_{i}} \leq c$
Done as sum $\mathrm{k}_{\mathrm{i}}<1$ (just need show for this $\mathrm{n}, \mathrm{O}(1)$

Select

Select runs in:
$T(n)=T(\operatorname{ceiling}(n / 5))$ $+T(7 n / 10+6)+O(n)$

By the previous proof this is $O(n)$: ceiling $(\mathrm{n} / 5)+7 \mathrm{n} / 10+6$
$\leq n / 5+1+7 n / 10+6=9 n / 10+7$ $\operatorname{sum}_{i} k_{i}=9 / 10<1$, done

Select

Does this work for making:

(1) $n / 3$ groups of $3 ?$
(2) $n / 7$ groups of $7 ?$
(3) n/9 groups of $9 ?$

