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Announcements

Programming assignment 1 posted
- need to submit a .sh file

The .sh file should just contain
what you need to type to 
compile and run your program
from the terminal



  

String matching

Some pattern/string P occurs with
shift s in text/string T if:
for all k in [1, |P|]: P[k] equals T[s+k]
T
P

s=5



  

String matching

Both the pattern, P, and text, T, come
from the same finite alphabet, ∑.

empty string (“”) = ε 

w is a prefix of x=w [ x, means exists
y s.t. wy = x (also implies |w| < |x|)
(w ] x = w is a suffix of x)



  

Prefix

w prefix of x means: all the first
letters of x are w
x
prefixes of x
suffixes of x

not
english!



  

Suffix

If x ] z and y ] z, then:
(a) If |x| < |y|, x ] y
(b) If |y| < |x|, y ] x
(c) If |x| = |y|, x = y



  

Dumb matching

Dumb way to find all shifts of P in T?
Check all possible shifts!

(see: naiveStringMatcher.py)
Run time?



  

Dumb matching

Dumb way to find all shifts of P in T?
Check all possible shifts!

(see: naiveStringMatcher.py)
Run time?
O(|P| |T|)



  

Rabin-Karp algorithm

A better way is to treat the pattern
as a single numeric number, instead
of a sequence of letters

So if P = {1, 2, 6} treat it as 126
and check for that value in T



  

Rabin-Karp algorithm

The benefit is that it takes a(n almost) 
constant time to get the each number
in T by the following:
(Let t

s
 = T[s, s+1, ..., s+|P|])

t
s+1

 = d(t
s
 – T[s+1]h) + T[s+|P|+1]

where d = | ∑ |, h= d|P|-1



  

Rabin-Karp algorithm

Example: ∑ = {0, 1, ..., 9}, | ∑ | = 10 
T = {1, 2, 6, 4, 7, 2}
P = {6, 4, 7}
t
0
 = 126

t
1
 = 10(126-T[0+1]103-1) +T[0+|P|+1]

t
1
 = 10(126-100) +T[0+3+1]

t
1
 = 264



  

Rabin-Karp algorithm

This is a constant amount of work
if the numbers are small...

So we make them small!
(using modulus/remainder)

Any problems?



  

Rabin-Karp algorithm

This is a constant amount of work
if the numbers are small...

So we make them small!
(using modulus/remainder)

Any problems?
x mod q=y mod q does not mean x=y



  

Hash functions



  

One way functions

Modulus is a one way function, thus
computing the modulus is easy but
recovering the original number is
hard/impossible

127 % 5 = 2, or 127 mod 5 = 2 mod 5
However if we want to solve x%5=2,
all we can say is x=2+5k or some k



  

Other one way functions?

One way functions



  

Other one way functions?
- multiplication
- hashing

Multiplication is famous, as it is easy:
200*50 = 10,000
... yet factoring is hard: 
132773= 31 * 4283 (what alg?)

One way functions



  

Hashing is another commonly used
function for security/verification, as...

-fast (low computation)
-low collision chance
-cannot easily produce a specific

hash

One way functions



  

One way functions



  

Hash functions



  

Rabin-Karp algorithm

Larger q (for mod):
- larger numbers = more computation
- less frequent errors

There are trade-offs, but we often
pick q > |P| but not q >> |P|

Pick a prime number as q



  

Rabin-Karp algorithm
Kabin-Karp-Matcher(T,P,|∑|,q,)
d=|∑|, h=d|P|-1 mod q, p=0, t

0
 = 0

for i=1 to |P| // “preprocessing”
p = (dp + P[i]) mod q // for P
t
0
 = (dt

0
 + T[i]) mod q // for T

for s = 0 to |T| - |P|
if p == t

s
, check brute-force match at s

if s < |T| - |P| then compute t
s+1



  

Rabin-Karp algorithm

To compute t
s+1

:
t
s+1

=(d(t
s
-t[s+1]h)+T[s+|P|+1]) mod q



  

Rabin-Karp algorithm

Example: T = {1, 2, 5, 3, 5, 2, 6, 3}
P = {2, 5}, q = 5, assume base 10



  

Rabin-Karp algorithm

Example: T = {1, 2, 5, 3, 5, 2, 6, 3}
P = {2, 5}, q = 5, assume base 10
P = 25 mod 5 = 0, t

0
 = 12 mod 5 = 2

t
i+1

=10*(t
i
-T[i+1]*10)+T[i+|P|+1]%q

t
1
 = 25 mod 5 = 0, true match!

t
2
 = 53 mod 5 = 3,

t
3
 = 35 mod 5 = 0, false match



  

Rabin-Karp algorithm

T = {1, 2, 5, 3, 5, 2, 6, 3}, P = {2, 5}
t
5
 = 52 mod 5 = 2,

t
6
 = 26 mod 5 = 1,

t
7
 = 63 mod 5 = 3

t
i+1

=10*(t
i
-T[i+1]*10)+T[i+|P|+1]%q

So only s=1 is match



  

Rabin-Karp algorithm

Run time? (Average?  Worst case?)



  

Rabin-Karp algorithm

Run time?
- “preprocessing” (first loop)= O(|P|)
- “matching” (second loop) = O(|T|)

So O(|T|+|P|) and as n>m, O(|T|) on
average

Worst case: always a match O(|T| |P|)


