String matching

```
>>
$> import re
>> r=re.compile(r"regexes\s(are|do)\s?(n[0']t)?\s(fun|boring)", re.I)
>> def is_match(x): return x is not None
>> is_match(re.match(r, "Regexes are fun!!!"))
True
>> is_match(re.match(r, "Regexes are not fun!!!"))
True
>> is_match(re.match(r, "Regexes aren't boring!!!"))
True
>> is_match(re.match(r, "Obviously, regexes are boring."))
False
>> is_match(re.search(r, "Obviously, regexes are boring."))
True
```


Announcements

Programming assignment 1 posted - need to submit a .sh file

The .sh file should just contain what you need to type to compile and run your program from the terminal

String matching

Some pattern/string P occurs with

 shift s in text/string T if: for all k in $[1,|\mathrm{P}|]$: $\mathrm{P}[\mathrm{k}]$ equals $\mathrm{T}[\mathrm{s}+\mathrm{k}]$

String matching

Both the pattern, P , and text, T , come from the same finite alphabet, Σ.
empty string ("") $=\varepsilon$

w is a prefix of $\mathrm{x}=\mathrm{w}$ [x , means exists y s.t. $\mathrm{wy}=\mathrm{x}$ (also implies $|\mathrm{w}| \leq|\mathrm{x}|$) (w] $\mathrm{x}=\mathrm{w}$ is a suffix of x)

Prefix

w prefix of x means: all the first letters of x are w $\mathrm{x} \longrightarrow$ "bread" prefixes of $\mathrm{x} \rightarrow \mathbf{b}$, $\mathbf{b r}$, bre, brea suffixes of $x \rightarrow$ read, ead, ad, d
 not english!

Suffix

If x] z and y$] \mathrm{z}$, then:
(a) If $|x| \leq|y|, x] y$
(b) If $|\mathrm{y}| \leq|\mathrm{x}|, \mathrm{y}] \mathrm{x}$
(c) If $|x|=|y|, x=y$

Dumb matching

Dumb way to find all shifts of P in T ?

 Check all possible shifts!

(a)
(b)
(c)
(d)
(see: naiveStringMatcher.py)
Run time?

Dumb matching

Dumb way to find all shifts of P in T ?

 Check all possible shifts!

$(a) \quad(b)$
(c)
(d)
(see: naiveStringMatcher.py)
Run time?
$\mathrm{O}(|\mathrm{P}| \mathrm{T} \mid)$

Rabin-Karp algorithm

A better way is to treat the pattern as a single numeric number, instead of a sequence of letters

So if $\mathrm{P}=\{1,2,6\}$ treat it as 126 and check for that value in T

Rabin-Karp algorithm

The benefit is that it takes a(n almost) constant time to get the each number in T by the following:
$\left(\right.$ Let $\left.\mathrm{t}_{\mathrm{s}}=\mathrm{T}[\mathrm{s}, \mathrm{s}+1, \ldots, \mathrm{~s}+|\mathrm{P}|]\right)$
$\mathrm{t}_{\mathrm{s}+1}=\mathrm{d}\left(\mathrm{t}_{\mathrm{s}}-\mathrm{T}[\mathrm{s}+1] \mathrm{h}\right)+\mathrm{T}[\mathrm{s}+|\mathrm{P}|+1]$
where $\mathrm{d}=|\Sigma|, \mathrm{h}=\mathrm{d}^{[\mathrm{P} \mid-1}$

Rabin-Karp algorithm

Example: $\Sigma=\{0,1, \ldots, 9\},|\Sigma|=10$
$\mathrm{T}=\{1,2,6,4,7,2\}$
$P=\{6,4,7\}$
$\mathrm{t}_{0}=126$
$\mathrm{t}_{1}=10\left(126-\mathrm{T}[0+1] 10^{3-1}\right)+\mathrm{T}[0+|\mathrm{P}|+1]$
$\mathrm{t}_{1}=10(126-100)+\mathrm{T}[0+3+1]$
$t_{1}=264$

Rabin-Karp algorithm

This is a constant amount of work if the numbers are small...

So we make them small!
(using modulus/remainder)
Any problems?

Rabin-Karp algorithm

This is a constant amount of work if the numbers are small...

So we make them small!
(using modulus/remainder)
Any problems?
$x \bmod q=y \bmod q$ does not mean $x=y$

Hash functions

One way functions

Modulus is a one way function, thus computing the modulus is easy but recovering the original number is hard/impossible
$127 \% 5=2$, or $127 \bmod 5=2 \bmod 5$ However if we want to solve $x \% 5=2$, all we can say is $x=2+5 k$ or some k

One way functions

Other one way functions?

One way functions

Other one way functions?

- multiplication
- hashing

Multiplication is famous, as it is easy: $200 * 50=10,000$
... yet factoring is hard:
$132773=31 * 4283$ (what alg?)

One way functions

Hashing is another commonly used function for security/verification, as...
-fast (low computation)
-low collision chance
-cannot easily produce a specific hash

One way functions

MD5SUMS-metalink.gpg
MD5SUMS.gpg
SHA1SUMS
SHA1SUMS.gpg
SHA256SUMS
SHA256SUMS.gpg
ubuntu-14.04.3-desktop-amd64.iso
ubuntu-14.04.3-desktop-amd64.iso.torrent ubuntu-14.04.3-desktop-amd64.iso.zsync ubuntu-14.04.3-desktop-amd64.list
ubuntu-14.04.3-desktop-amd64.manifest ubuntu-14.04.3-desktop-amd64.metalink ubuntu-14.04.3-desktop-i386.iso
uhuntı-14 A4 ३-desktnn-i३RК isn torrent

06-Aug-2015 18:52 198
06-Aug-2015 19:45 198
06-A © - Mozilla Firefox
06-A (ㅇ) http://re...A256SUMS \times 노
06-A \leftarrow releases.ubuntu.com/14.04/SHA256SUMS
05-A 756a42474bc437f614caa09dbbc0808038d1a586d172894c113bb1c22b75d580 *ubuntu-14.04.3-desktop-amd64.iso 266242224706bb498a30a8b2abecb830c94284a5c8269109783b8f739227ele0 *ubuntu-14.04.3-desktop-i386.iso a3b345908a826e262f4ealafeb357fd09ec0558cf34e6c9112cead4bb55ccdfb *ubuntu-14.04.3-server-amd64.iso bc3b20ad00f19d0169206af0df5a4186c6led08812262c55dbca3b7b1f1c4a0b *wubi.exe

Hash functions

Rabin-Karp algorithm

Larger q (for mod):

- larger numbers = more computation
- less frequent errors

There are trade-offs, but we often pick $q>|P|$ but not $q \gg|P|$

Pick a prime number as q

Rabin-Karp algorithm

Kabin-Karp-Matcher(T,P,, $\Sigma, \mathbf{, q ,})$
$\mathrm{d}=|\Sigma|, \mathrm{h}=\mathrm{d}^{\mathrm{PP}-1} \bmod \mathrm{q}, \mathrm{p}=0, \mathrm{t}_{0}=0$
for $\mathrm{i}=1$ to $|\mathrm{P}| / /$ "preprocessing"
$\mathrm{p}=(\mathrm{dp}+\mathrm{P}[\mathrm{i}]) \bmod \mathrm{q} / /$ for P
$\mathrm{t}_{0}=\left(\mathrm{dt}_{0}+\mathrm{T}[\mathrm{i}]\right) \mathrm{mod} \mathrm{q} / /$ for T
for $\mathrm{s}=0$ to $|\mathrm{T}|-|\mathrm{P}|$
if $\mathrm{p}=\mathrm{t}_{\mathrm{s}}$, check brute-force match at s
if $\mathrm{s}<|\mathrm{T}|-|\mathrm{P}|$ then compute $\mathrm{t}_{\mathrm{s}+1}$

Rabin-Karp algorithm

To compute $\mathrm{t}_{\mathrm{s}+1}$:

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{s}+1}=\left(\mathrm{d}\left(\mathrm{t}_{\mathrm{s}}-\mathrm{t}[\mathrm{~s}+1] \mathrm{h}\right)+\mathrm{T}[\mathrm{~s}+|\mathrm{P}|+1]\right) \bmod \mathrm{q} \\
& \bmod 13 \\
& 14152 \equiv(31415-3 \cdot 10000) \cdot 10+2(\bmod 13) \\
& \equiv(7-3 \cdot 3) \cdot 10+2(\bmod 13) \\
& \equiv 8(\bmod 13)
\end{aligned}
$$

Rabin-Karp algorithm

Example: $\mathrm{T}=\{1,2,5,3,5,2,6,3\}$

$P=\{2,5\}, q=5$, assume base 10

Rabin-Karp algorithm

Example: $\mathrm{T}=\{1,2,5,3,5,2,6,3\}$
$\mathrm{P}=\{2,5\}, \mathrm{q}=5$, assume base 10
$\mathrm{P}=25 \bmod 5=0, \mathrm{t}_{0}=12 \bmod 5=2$
$\mathrm{t}_{\mathrm{i}+1}=10^{*}\left(\mathrm{t}_{\mathrm{i}}-\mathrm{T}[\mathrm{i}+1]^{*} 10\right)+\mathrm{T}[\mathrm{i}+|\mathrm{P}|+1] \% \mathrm{q}$
$\mathrm{t}_{1}=25 \bmod 5=0$, true match!
$\mathrm{t}_{2}=53 \bmod 5=3$,
$t_{3}=35 \bmod 5=0$, false match

Rabin-Karp algorithm

$\mathrm{T}=\{1,2,5,3,5,2,6,3\}, \mathrm{P}=\{2,5\}$
$\mathrm{t}_{5}=52 \bmod 5=2$,
$\mathrm{t}_{6}=26 \bmod 5=1$,
$\mathrm{t}_{7}=63 \bmod 5=3$
$\mathrm{t}_{\mathrm{i}+1}=10^{*}\left(\mathrm{t}_{\mathrm{i}}-\mathrm{T}[\mathrm{i}+1]^{*} 10\right)+\mathrm{T}[\mathrm{i}+|\mathrm{P}|+1] \% \mathrm{q}$
So only $s=1$ is match

Rabin-Karp algorithm

Run time? (Average? Worst case?)

Rabin-Karp algorithm

Run time?

- "preprocessing" (first loop)= $\mathrm{O}(|\mathrm{P}|)$
- "matching" (second loop) $=\mathrm{O}(|\mathrm{T}|)$

So $\mathrm{O}(|\mathrm{T}|+|\mathrm{P}|)$ and as $\mathrm{n}>\mathrm{m}, \mathrm{O}(|\mathrm{T}|)$ on

 averageWorst case: always a match $\mathrm{O}(|\mathrm{T}||\mathrm{P}|)$

