String matching
Announcements

Programming assignment extended to Thursday
Prefix vs suffix

w is a prefix of x = w [x, means exists y s.t. wy = x (also implies |w| ≤ |x|)
(w] y = w is a suffix of x)

An easy way to remember prefix vs suffix is: prefix = [, which looks like beginning of an array (similar suffix)
Finite Automata

A finite automata has 5 parts:
(1) A set of states Q
(2) An initial state q_0
(3) Some accepting states, A subset Q
(4) An alphabet, Σ
(5) A transition function δ, from $Q \times \Sigma$ to Q, namely $\delta(q,a) = \sigma(P_qa)$
Finite Automata

Let \(\sigma(x) = \max \{ k : P_k \mid x \} \)

So \(\sigma \) is the longest prefix of \(P \) that is also a suffix of \(x \):

\[P = \{a, b, a, a, b, c, a\} \]

\(\sigma(baacaacbaba) = 2 \) (all longer bad)
Finite Automata

Compute-Transition-Function(P, \(\Sigma \))

for \(q = 0 \) to \(|P| \)

for each \(a \) in \(\Sigma \)

\[
k = \min(|P|, q+1) \quad // \text{end } P \text{ or } q
\]

while: not \(P_k \]

\[
q_a
\]

\[
k = k - 1
\]

\[
\delta(q,a) = k \quad // \text{runtime?}
\]
Finite Automata

\(O(|P|^3|\Sigma|), \) but can get to \(O(|P| |\Sigma|)\) if smart

- \(|P|\) - outside loop
- \(|\Sigma|\) - outside loop
- \(|P|\) - repeat runs at most \(|P|\) times
- \(|P| - P_k \] P_q a checks \(O(|P|)\) chars
Finite Automata

Finite-Automaton-Matcher(T,δ,|P|)
q=0 // q is state
for i = 1 to |T|
 q = δ(q,T[i])
 if q == |P|
 print "Pattern occurs at shift" i-|P|

Runtime = O(|T|)
Finite Automata

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

(see FAsigma.py)
Finite Automata

\[
\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
a & 1 & 1 & 3 & 4 & 1 & 3 & 7 & 1 \\
b & 0 & 2 & 0 & 2 & 5 & 0 & 0 & 2 \\
c & 0 & 0 & 0 & 0 & 6 & 0 & 0 & 0 \\
\end{array}
\]

\[S = \{a, b, c, a, b, a, a, b, c, a, c, a\}\]

Start 0, see \[S_1\] = 'a', goto 1...

At 1, see \[S_2\] = 'b', goto 2...

At 2, see \[S_3\] = 'c', goto 0...

At 0, see \[S_4\] = 'a', goto 1...
Finite Automata

\[
\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
a & 1 & 1 & 3 & 4 & 1 & 3 & 7 & 1 \\
b & 0 & 2 & 0 & 2 & 5 & 0 & 0 & 2 \\
c & 0 & 0 & 0 & 0 & 0 & 6 & 0 & 0 \\
\end{array}
\]

\[S = \{a, b, c, a, b, a, a, b, c, a, c, a\}\]

At 1, see \(S_5 = 'b'\), goto 2...

At 2, see \(S_6 = 'a'\), goto 3...

At 3, see \(S_7 = 'a'\), goto 4...

At 4, see \(S_8 = 'b'\), goto 5...
Finite Automata

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

S = \{a, b, c, a, b, a, a, b, c, a, c, a\}

At 5, see \(S_9 = 'c'\), goto 6...

At 6, see \(S_{10} = 'a'\), goto 7... MATCH!

At 7, see \(S_{11} = 'a'\), goto 1...

At 1, see \(S_{12} = 'c'\), goto 0...
Finite Automata

0 1 2 3 4 5 6 7
a 1 1 3 4 1 3 7 1
b 0 2 0 2 5 0 0 2
c 0 0 0 0 0 6 0 0

S = \{a, b, c, a, b, a, a, b, c, a, c, a\}

At 0, see $S_{13} =$'a', goto a...

Done, one match found ending at S_{10} (so match starts S_4)
Finite Automata

You try it!

P={a, b, a, a}
S={a, a, b, a, c, a, a, b, a, a, b, a, a, a}

What is automata?
Where are matches?
FA correctness

Lemma 32.2: $\sigma(xa) \leq \sigma(x) + 1$

Obvious...
If $x \parallel z$ and $y \parallel z$, then:

(a) If $|x| \leq |y|$, $x \parallel y$
(b) If $|y| \leq |x|$, $y \parallel x$
(c) If $|x| = |y|$, $x = y$
Lemma 32.3: if $q = \sigma(x)$, then $\sigma(xa) = \sigma(P_q a)$

Proof:

Let $r = \sigma(xa)$ then $P_r \ [xa$ and $r \leq q+1$

So $|P_r| \leq |P_q a|$ means $P_r \ [P_q a$

$\sigma(xa) \leq \sigma(P_q a)$,

$P_q a \ [xa$, so also $\sigma(P_q a) \leq \sigma(xa)$, thus equal
Theorem 32.4: if Φ is the final-state function, then $\Phi(T_i) = \sigma(T_i)$

Base: $T_0 = \varepsilon$, so $\Phi(T_0) = 0 = \sigma(T_0)$

Induction: $\Phi(T_{i+1}) = \Phi(T_ia) = \delta(\Phi(T_i),a) = \sigma(P_q a) = \sigma(T_ia) = \sigma(T_{i+1})$, where $q = \Phi(T_i)$
Knuth-Morris-Pratt

Faster computation by using pattern symmetries within itself (vs transitions for each char/state)

The function π does this, namely $\pi(q) = \max(k : k < q \text{ and } P_k \mid P_q)$

Namely, π finds shifts of P on itself
Knuth-Morris-Pratt

Table

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P[i]$</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>$\pi[i]$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Diagram

- P_8: $aba\ldots a$
- $\pi[8] = 6$
- P_6: $aba\ldots b$
- $\pi[6] = 4$
- P_4: $aba\ldots b$
- $\pi[4] = 2$
- P_2: $aba\ldots b$
- $\pi[2] = 0$
- P_0: ε

The diagrams illustrate the process of constructing the π-array for a given pattern.
Knuth-Morris-Pratt

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>P[i]</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>π(i)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

(See: FAsigma.py ... again)
Knuth-Morris-Pratt

KMP-Matcher(T,P,\pi) \ // \ runtime?
q = 0
for i = 1 to |T|
 while q > 0 and P[q+1] \neq T[i]
 q = \pi[q]
 if P[q+1] == T[i], then q = q+1
 if q == |P|
 match found, and set q = \pi[q]
The while loop decreases q, so it can only run as many times as q increases.

q increases only if match in T, so at most $|T|$ times.

$O(|T| + |T|) = O(|T|)$

(why not $|T|*|T|$?)
Knuth-Morris-Pratt

Compute-Prefix-Function(P)

\(k = 0, \ \pi[1] = 0 \)

for \(q = 2 \) to \(|P|\)

\[\text{while } k > 0 \text{ and } P[k+1] \neq P[q] \]

\[k = \pi[k] \]

if \(P[k+1] == P[q] \)

\[k = k + 1 \]

\(\pi[q] = k \) // Runtime = \(O(|P|) \)
KMP correctness

Let $\pi^*[q] = \{\pi[q], \pi[\pi[q]], \ldots, 0\}$

Lemma 32.5: $\pi^*[q] = \{k : k < q$ and $P_k \triangleright P_q\}$

Remember:

$\pi(q) = \max(k : k < q$ and $P_k \triangleright P_q)$,

so fairly obvious (see next slide)

(Tip: prove 2 sets equal by showing A subset B and B subset A)
KMP correctness

\[\pi^*[8] = \{6,4,2,0\} \]
KMP correctness

Lemma 32.6: if $\pi[q] > 0$, then $\pi[q]-1$ in $\pi^*[q-1]$

Proof: $\pi[q] < q$ and $P_{\pi[q]} P_q$, so $\pi[q] - 1 < q - 1$ and $P_{\pi[q]-1} P_{q-1}$ (we know $\pi[q] > 0$, so we can drop a char)

Previous lemma says: $\pi^*[q] = \{k : k < q$ and $P_k P_q\}$, above let $q=q-1$, $k=\pi[q]-1$, then done
KMP correctness

Let $E_{q-1} = \{ k \in \pi^*[q-1] : P[k+1] = P[q] \}$

Corollary 32.7: $\pi[q] = \{ 0 \text{ or } 1 + \max\{ k \in E_{q-1} \} \text{ if } E_{q-1} \text{ not empty} \}$

Proof:

Case 1: E_{q-1} empty, no match, so 0

Case 2: By def of E_{q-1}, $k+1 < q$ and $P_{k+1}P_q$ implies $\pi[q] \geq 1 + \max\{ k \in E_{q-1} \}$
KMP correctness

\((E_{q-1} = \{k \in \pi^{*}[q-1] : P[k+1]=P[q]\}) \)

Case 2 (cont): \(\pi[q] \geq 1+\max\{k \in E_{q-1}\} \)

Let \(r = \pi[q] - 1 \), then \(P_{r+1} \) so \(P[r+1] = P[q] \). Lemma 32.6 says \(r \in \pi^{*}[q-1], \) so \(r \in E_{q-1} \).

Thus \(\pi[q] \leq 1+\max\{k \in E_{q-1}\} \)

Thus \(\pi[q] = 1+\max\{k \in E_{q-1}\} \)
KMP correctness

$k = \pi[q-1]$ at the start of the for loop in Compute-Prefix-Function alg. The while loop finds $\max\{k \in E_{q-1}\}$ and adds one for Corollary 32.7.

If there $k=0$, then either the max was 0 and it will be incremented to 1 or no match and will stay 0.
KMP correctness

KMP alg correctness (map to FA alg):
Base: both start with $q=0$
Step ($q' = \sigma(T_{i-1})$):
Case $\sigma(T_i) = 0$: $q=0$ and same
Case $\sigma(T_i) = q'+1$: while does not run, then increases q, so $q = q' + 1 = \sigma(T_i)$
(continued)
KMP correctness

Step: $q' = \sigma(T_{i-1})$, Case $0 < \sigma(T_i) < q'$:
while loop terminates when $P[q+1] = T[i]$, so $q+1 = \sigma(P_{q'}T[i])$
$= \sigma(T_{i-1}T[i])$
$= \sigma(T_i)$, then q is incremented so...
$q = \sigma(T_i)$