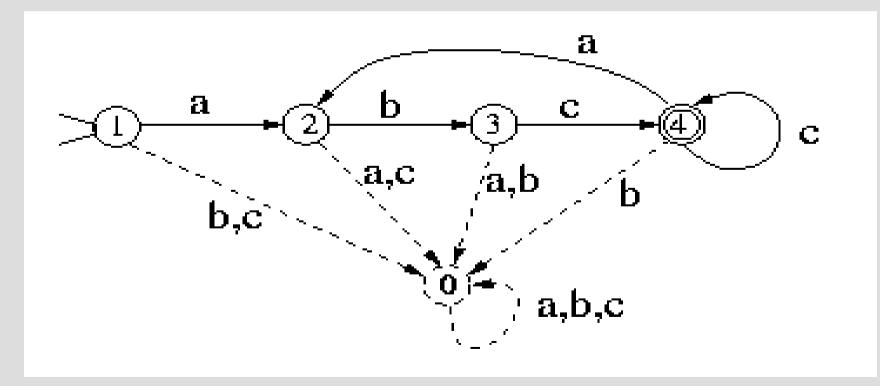
String matching



Announcements

Programming assignment extended to Thursday

Prefix vs suffix

w is a prefix of x=w [x, means exists
y s.t. wy = x (also implies
$$|w| \le |x|$$
)
(w] y = w is a suffix of x)

An easy way to remember prefix vs suffix is: prefix = [, which looks like beginning of an array (similar suffix)

A finite automata has 5 parts: (1) A set of states Q (2) An initial state q_0 (3) Some accepting states, A subset Q (4) An alphabet, Σ (5) A transition function δ , from Q x \sum to Q, namely $\delta(q,a) = \sigma(P_a)$

Let $\sigma(x) = \max \{k : P_k \mid x\}$

So σ is the longest prefix of P that is also a suffix of x:

$P = \{a, b, a, a, b, c, a\}$ $\sigma(b a a c b a b) = 2 (all longer bad)$

Compute-Transition-Function(P, Σ) for q = 0 to |P|for each a in Σ k = min(|P|, q+1)/(end P or q)while: not P_k] P_a k = k - 1 $\delta(q,a) = k$ // runtime?

 $O(|P|^3|\Sigma|)$, but can get to $O(|P||\Sigma|)$ if smart

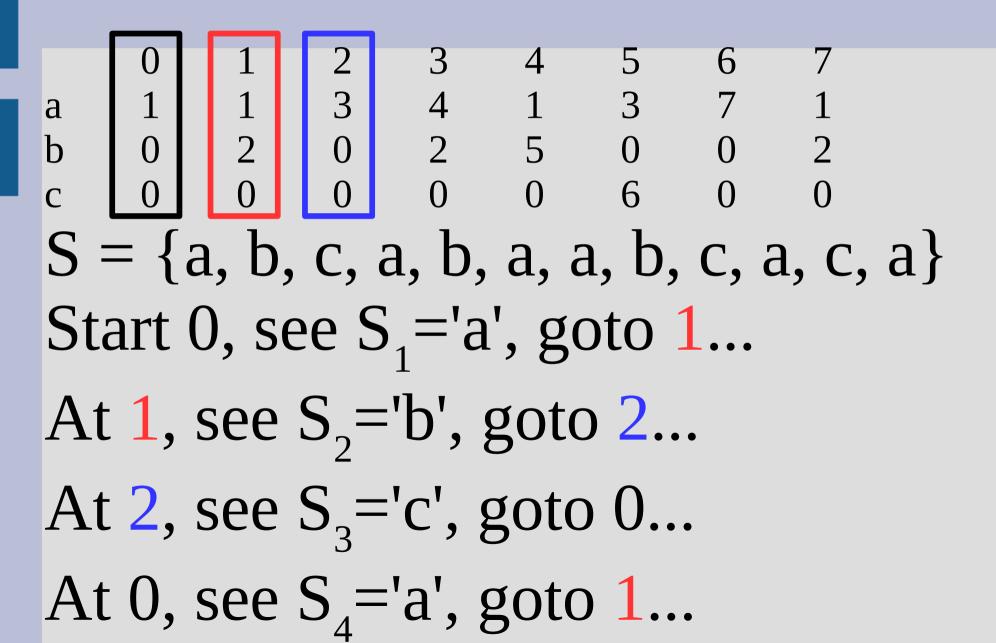
- |P| outside loop
- $|\Sigma|$ outside loop
- |P| repeat runs at most |P| times
- $|P| P_k] P_q$ a checks O(|P|) chars

Finite-Automaton-Matcher(T,δ,|P|) q=0 // q is state for i = 1 to |T| $q = \delta(q, T[i])$ if q == |P|print "Pattern occurs at shift" i-|P|

Runtime = O(|T|)

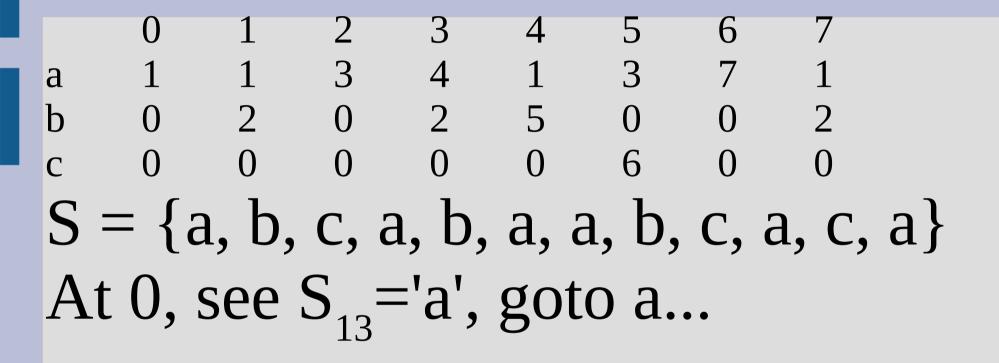
1, 2, 3, 4, 5, 6, 7 P = {a, b, a, a, b, c, a}, then δ is:

0 1 2 3 4 5 6 7 a 1 1 3 4 1 3 7 1 b 0 2 0 2 5 0 0 2 c 0 0 0 0 0 6 0 0 (see FAsigma.py)



01234567113413710202500200000600 a b C $S = \{a, b, c, a, b, a, a, b, c, a, c, a\}$ At 1, see S_{5} ='b', goto 2... At 2, see $S_6 = a'$, goto 3... At 3, see $S_7 = a'$, goto 4... At 4, see S_8 ='b', goto 5...

a b С $S = \{a, b, c, a, b, a, a, b, c, a, c, a\}$ At 5, see S_{q} ='c', goto 6... At 6, see S_{10} ='a', goto 7... MATCH! At 7, see S₁₁='a', goto 1... At 1, see S_{12} ='c', goto 0...



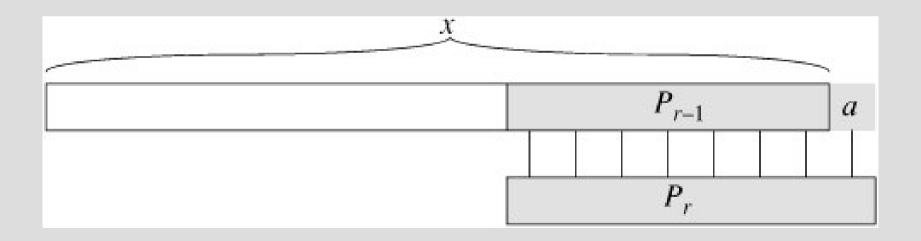
Done, one match found ending at S_{10} (so match starts S_4)

You try it!

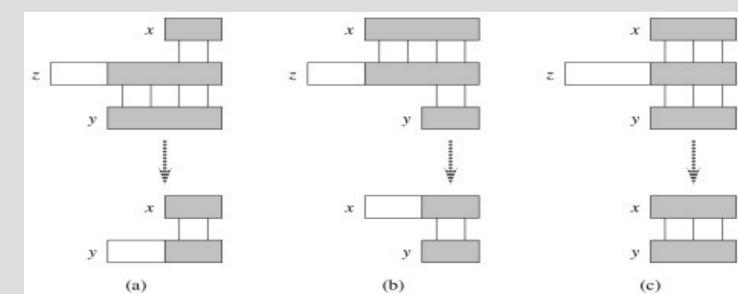
P={a, b, a, a} S={a, a, b, a, c, a, a, b, a, a, b, a, a, a}

What is automata? Where are matches?

Lemma 32.2: $\sigma(xa) \le \sigma(x) + 1$ Obvious...



If x] z and y] z, then: (a) If $|x| \le |y|$, x] y (b) If $|y| \le |x|$, y] x (c) If |x| = |y|, x = y



Lemma 32.3: if $q = \sigma(x)$, then $\sigma(xa) = \sigma(P_aa)$ x P_{r-1} a Proof: P_r P_{q}] x by def of q= $\sigma(x)$, then $P_{q}a$] xa Let $r=\sigma(xa)$ then P_r] xa and $r \le q+1$ So $|P_r| \le |P_a|$ means P_r] P_a $\sigma(xa) \leq \sigma(P_aa),$ $P_{a}a$] xa, so also $\sigma(P_{a}a) \leq \sigma(xa)$, thus equal

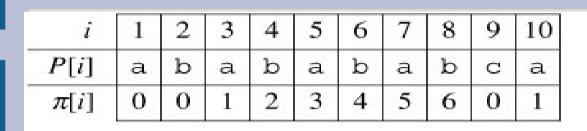
Theorem 32.4: if Φ is the final-state function, then $\Phi(T_i) = \sigma(T_i)$ Base: $T_0 = \epsilon$, so $\Phi(T_0) = 0 = \sigma(T_0)$

Induction: $\Phi(T_{i+1}) = \Phi(T_ia) = \delta(\Phi(T_i)a) = \sigma(P_qa) = \sigma(T_ia) = \sigma(T_ia)$, where $q = \Phi(T_i)$

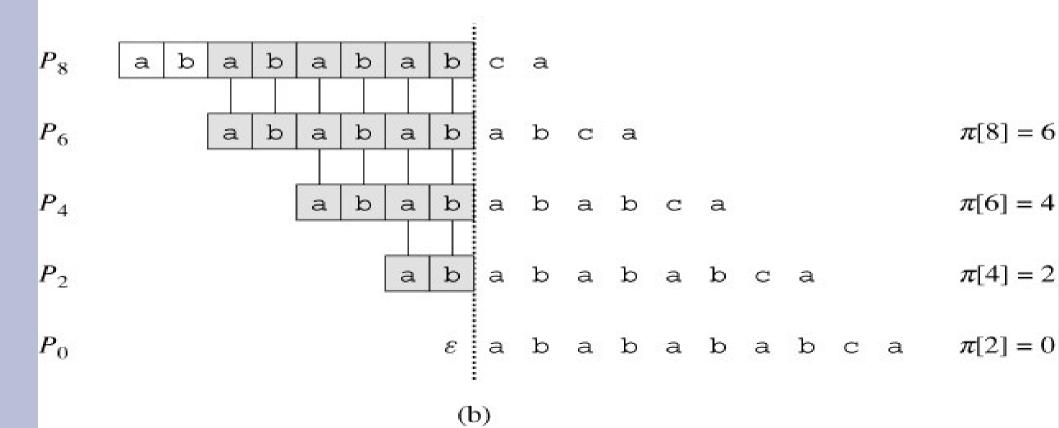
Faster computation by using pattern symmetries within itself (vs transitions for each char/state)

The function π does this, namely $\pi(q) = \max(k : k < q \text{ and } P_k] P_q$

Namely, π finds shifts of P on itself



(a)



i 1 2 3 4 5 6 7 P[i] a b a a b c a $\pi(i)$ 0 0 1 1 2 0 1

(See: FAsigma.py ... again)

KMP-Matcher(T,P,π) // runtime? $\mathbf{q} = \mathbf{0}$ for i = 1 to |T|while q > 0 and $P[q+1] \neq T[i]$ $\mathbf{q} = \pi[\mathbf{q}]$ if P[q+1] == T[i], then q = q+1 if q == |P|match found, and set $q = \pi[q]$

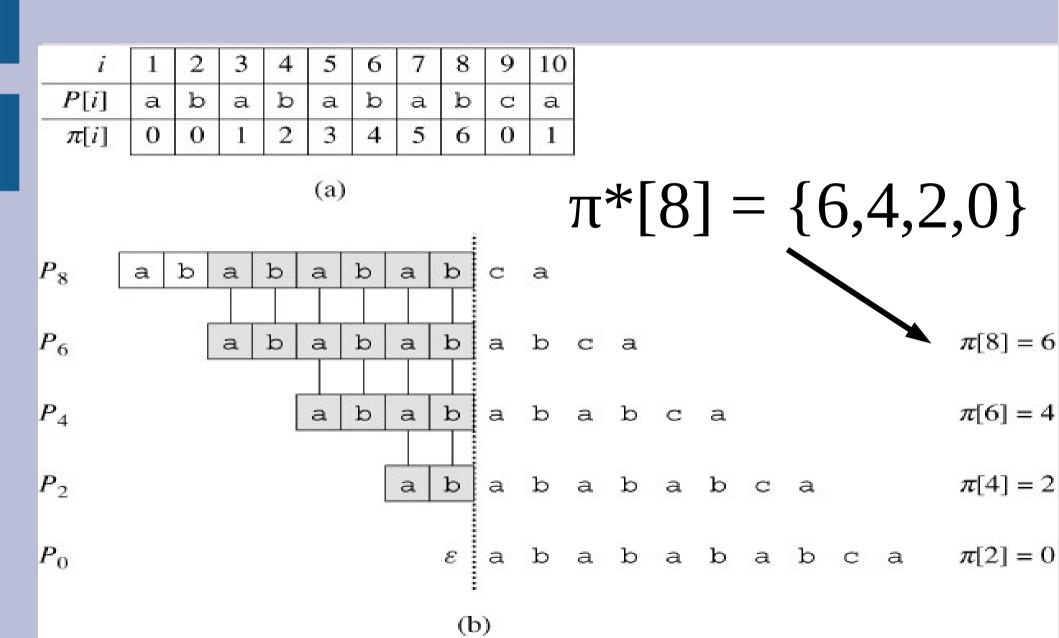
The while loop decreases q, so it can only run as many times as q increases

q increases only if match in T, so at most |T| times

O(|T| + |T|) = O(|T|)(why not |T|*|T|?)

Compute-Prefix-Function(P) $k = 0, \pi[1] = 0$ for q = 2 to |P|while k > 0 and $P[k+1] \neq P[q]$ $k = \pi[k]$ if P[k+1] == P[q]k = k+1// Runtime = O(|P|) $\pi[q]=k$

Let $\pi^{*}[q] = {\pi[q], \pi[\pi[q]], ... 0}$ Lemma 32.5: $\pi^{*}[q] = \{k : k < q \text{ and } \}$ $P_k] P_q$ **Remember:** $\pi(q) = \max(k : k < q \text{ and } P_k] P_q),$ so fairly obvious (see next slide) (Tip: prove 2 sets equal by showing A subset B and B subset A)



KMP correctness Lemma 32.6: if $\pi[q] > 0$, then $\pi[q]-1$ in $\pi^*[q-1]$ Proof: $\pi[q] < q$ and $P_{\pi[q]}$] P_{q} , so $\pi[q] - 1 < q - 1 \text{ and } P_{\pi[q]-1}] P_{q-1}$ (we know $\pi[q] > 0$, so we can drop a char) Previous lemma says: $\pi^{*}[q] = \{k:$ k < q and P_k] P_q }, above let q=q-1, $k=\pi[q]-1$, then done

27

Let $E_{q-1} = \{k \text{ in } \pi^*[q-1] : P[k+1] = P[q]\}$ Corollary 32.7: $\pi[q] = \{0 \text{ or }$ $1+\max\{k \text{ in } E_{a-1}\} \text{ if } E_{a-1} \text{ not empty}\}$ **Proof:** Case 1: E_{q-1} empty, no match, so 0 Case 2: By def of E_{q-1} , k+1 < q and $P_{k+1}P_{q}$ implies $\pi[q] \ge 1 + \max\{k \text{ in } E_{q-1}\}$

 $(E_{q-1} = \{k \text{ in } \pi^{*}[q-1] : P[k+1] = P[q]\})$ Case 2 (cont): $\pi[q] \ge 1 + \max\{k \text{ in } E_{q-1}\}$ Let $r = \pi[q] - 1$, then $P_{r+1} = P_{q}$ so P[r+1] = P[q]. Lemma 32.6 says/ r in $\pi^*[q-1]$, so r in E_{q-1} . Thus $\pi[q] \le 1 + \max\{k \text{ in } E_{q-1}\}$ Thus $\pi[q]=1+\max\{k \text{ in } E_{q-1}\}$

k=π[q-1] at the start of the for loop in Compute-Prefix-Function alg The while loop finds max{k in E_{q-1}} and adds one for Corollary 32.7

If there k=0, then either the max was 0 and it will be incremented to 1 or no match and will stay 0

KMP alg correctness (map to FA alg): Base: both start with q=0 Step $(q' = \sigma(T_{i-1}))$: Case $\sigma(T_i)=0$: q=0 and same Case $\sigma(T_i) = q' + 1$: while does not run, then increases q, so $q=q'+1=\sigma(T_i)$ (continued)

Step: $q' = \sigma(T_{i-1})$, Case $0 < \sigma(T_i) < q'$: while loop terminates when P[q+1]=T[i], so $q+1 = \sigma(P_{a'}T[i])$ $=\sigma(T_{i-1}T[i])$ $=\sigma(T_i)$, then q is incremented so... $q = \sigma(T_i)$