String matching
Announcements

Programming assignment extended to Thursday

Exam next week: open book/notes
Covers: sorting, selection, greedy algorithms
Prefix vs suffix

w is a prefix of $x = w$ \[x, \text{ means exists } y \text{ s.t. } wy = x \text{ (also implies } |w| \leq |x|\) \]

(w] y = w$ is a suffix of x)

An easy way to remember prefix vs suffix is: prefix = [, which looks like beginning of an array (similar suffix)
Finite automata

We built a graph, where arrows are:

\[\delta(q,a) = \sigma(P_q a) \]

... with:

\[\sigma(x) = \max \{ k : P_k \] x\}\]

Today we will prove correctness!
FA correctness

Lemma 32.2: $\sigma(xa) \leq \sigma(x) + 1$

Obvious...
If $x \uparrow z$ and $y \downarrow z$, then:

(a) If $|x| \leq |y|$, $x \uparrow y$

(b) If $|y| \leq |x|$, $y \downarrow x$

(c) If $|x| = |y|$, $x = y$
Lemma 32.3: if $q = \sigma(x)$, then $\sigma(xa) = \sigma(P_q a)$

Proof:

By definition of $q = \sigma(x)$, then $P_q x$ by def of $q = \sigma(x)$, then $P_q x a$

Let $r = \sigma(xa)$ then $P_r xa$ and $r \leq q + 1$

So $|P_r| \leq |P_q a|$ means $P_r x a$

$\sigma(xa) \leq \sigma(P_q a)$,

$P_q a xa$, so also $\sigma(P_q a) \leq \sigma(xa)$, thus equal
FA correctness

Theorem 32.4: if \(\Phi \) is the final-state function, then \(\Phi(T_i) = \sigma(T_i) \)

Base: \(T_0 = \varepsilon \), so \(\Phi(T_0) = 0 = \sigma(T_0) \)

Induction: \(\Phi(T_{i+1}) = \Phi(T_i a) = \delta(\Phi(T_i),a) = \sigma(P_q a) = \sigma(T_i a) = \sigma(T_{i+1}) \), where \(q = \Phi(T_i) \)
Knuth-Morris-Pratt

Faster computation by using pattern symmetries within itself (vs transitions for each char/state)

The function π does this, namely $\pi(q) = \max(k : k < q \text{ and } P_k \mid P_q)$

Namely, π finds shifts of P on itself
Knuth-Morris-Pratt

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P[i]$</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>$\pi[i]$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

(a)

(b)

P_2
P_4
P_6
P_8

$\pi[2] = 0$
$\pi[4] = 2$
$\pi[6] = 4$
$\pi[8] = 6$
Knuth-Morris-Pratt

Let's look at the example from last time:

P = “abaabca”
T = “abcabaabcaca”

First we need to compute π's: Find shifts of pattern with itself
Now we just need to run through the string T...

(See: FAsigma.py ... again)
Knuth-Morris-Pratt

T = “abcabaabcaca”

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>P[i]</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>π(i)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Start q=0, see T[1]='a'=P[q+1]=P[1]
At q=1, see T[2]='b'=P[q+1]=P[2]
At q=2, see T[3]='c'... not P[q+1]

π(q) = π(2) = 0. At 0, stop follow π
At q=0, see T[4]='a'=P[q+1]=P[1]
At q=1, see T[5]='b'=P[q+1]=P[2]
Knuth-Morris-Pratt

T = “abcabaabcaca”

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>P[i]</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>(\pi(i))</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

At q=1, see \(T[5] = 'b' = P[q+1] = P[2]\)
At q=2, see \(T[6] = 'a' = P[q+1] = P[3]\)
At q=3, see \(T[7] = 'a' = P[q+1] = P[4]\)
At q=4, see \(T[8] = 'b' = P[q+1] = P[5]\)
At q=5, see \(T[9] = 'c' = P[q+1] = P[6]\)
At q=6, see \(T[10] = 'a' = P[q+1] = P[7]\)
Knuth-Morris-Pratt

T = “abcabaabcaca”

\[
\begin{array}{cccccccc}
 i & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
 P[i] & a & b & a & a & b & c & a \\
 \pi(i) & 0 & 0 & 1 & 1 & 2 & 0 & 1 \\
\end{array}
\]

At q=6, see T[10] = 'a' = P[q+1] = P[7]

Match! Set q = \pi(q) = \pi(7) = 1

At q=1, see T[11] = 'c'... not P[2]

\[\pi(q) = \pi(1) = 0.\text{ At 0, stop follow } \pi\]

At q=0, see T[12] = 'a' = P[q+1] = P[1]

At q=1, but no more T, so done
Knuth-Morris-Pratt

Compute-Prefix-Function\((P) \)

\[
k = 0, \ \pi[1] = 0
\]

for \(q = 2 \) to \(|P| \)

while \(k > 0 \) and \(P[k+1] \neq P[q] \)

\[
k = \pi[k]
\]

if \(P[k+1] == P[q] \)

\[
k = k+1
\]

\[
\pi[q]=k \quad // \text{Runtime} = \text{??？}
\]
Knuth-Morris-Pratt

Compute-Prefix-Function(P)

\[k = 0, \; \pi[1] = 0 \]

for \(q = 2 \) to \(|P|\)

\[
\text{while } k > 0 \text{ and } P[k+1] \neq P[q] \\
\quad k = \pi[k] \\
\text{if } P[k+1] == P[q] \\
\quad k = k+1 \\
\]

\[\pi[q]=k \quad // \text{Runtime} = O(|P|) \]
Knuth-Morris-Pratt

KMP-Matcher(T,P,π) // runtime?
q = 0
for i = 1 to |T|
 while q > 0 and P[q+1] ≠ T[i]
 q = π[q]
 if P[q+1] == T[i], then q = q+1
 if q == |P|
 match found, and set q = π[q]
Knuth-Morris-Pratt

The while loop decreases q, so it can only run as many times as q increases.

q increases only if match in T, so at most $|T|$ times.

$O(|T| + |T|) = O(|T|)$

(why not $|T| \times |T|$?)
Knuth-Morris-Pratt

You try it!

\[P = \{a, b, a, a\} \]
\[S = \{a, a, b, a, c, a, a, b, a, a, b, a, a, a\} \]

What are \(\pi \)'s?
Where are matches?
KMP correctness

Let $\pi^*[q] = \{\pi[q], \pi[\pi[q]], \ldots, 0\}$

Lemma 32.5: $\pi^*[q] = \{k : k < q \text{ and } P_k \cdot P_q\}$

Remember:

$\pi(q) = \max(k : k < q \text{ and } P_k \cdot P_q)$, so fairly obvious (see next slide)

(Tip: prove 2 sets equal by showing $A \subset B$ and $B \subset A$)
KMP correctness

\[\pi^*[8] = \{6,4,2,0\} \]
Lemma 32.6: if $\pi[q] > 0$, then $\pi[q]-1$ in $\pi^*[q-1]$

Proof: $\pi[q] < q$ and $P_{\pi[q]}P_q$, so $\pi[q] - 1 < q - 1$ and $P_{\pi[q]-1}P_{q-1}$ (we know $\pi[q] > 0$, so we can drop a char)

Previous lemma says: $\pi^*[q] = \{k : k < q$ and $P_{k}P_q\}$, above let $q=q-1$, $k=\pi[q]-1$, then done
KMP correctness

Let \(E_{q-1} = \{ k \in \pi^*[q-1] : P[k+1] = P[q] \} \)

Corollary 32.7: \(\pi[q] = \{ 0 \) or \(1 + \max\{ k \in E_{q-1} \} \) if \(E_{q-1} \) not empty \}

Proof:

Case 1: \(E_{q-1} \) empty, no match, so 0

Case 2: By def of \(E_{q-1} \), \(k+1 < q \) and \(P_{k+1} \)P implies \(\pi[q] \geq 1 + \max\{ k \in E_{q-1} \} \)
KMP correctness

\[(E_{q-1} = \{k \in \pi^*[q-1] : P[k+1]=P[q]\})\]

Case 2 (cont): \(\pi[q] \geq 1 + \max\{k \in E_{q-1}\}\)

Let \(r = \pi[q] - 1\), then \(P_{r+1} \leq P_q\) so \(P[r+1] = P[q]\). Lemma 32.6 says \(r \in \pi^*[q-1]\), so \(r \in E_{q-1}\).

Thus \(\pi[q] \leq 1 + \max\{k \in E_{q-1}\}\)

Thus \(\pi[q] = 1 + \max\{k \in E_{q-1}\}\)
KMP correctness

$k=\pi[q-1]$ at the start of the for loop in Compute-Prefix-Function alg

The while loop finds $\max\{k \text{ in } E_{q-1}\}$ and adds one for Corollary 32.7

If there $k=0$, then either the max was 0 and it will be incremented to 1 or no match and will stay 0
KMP correctness

KMP alg correctness (map to FA alg):
Base: both start with q=0
Step (q'=\sigma(T_{i-1})):
Case \sigma(T_i)=0: q=0 and same
Case \sigma(T_i)=q'+1: while does not run, then increases q, so q=q'+1=\sigma(T_i)
(continued)
KMP correctness

Step: $q' = \sigma(T_{i-1})$, Case $0 < \sigma(T_i) < q'$: while loop terminates when $P[q+1] = T[i]$, so $q + 1 = \sigma(P_{q'}T[i]) = \sigma(T_{i-1} T[i]) = \sigma(T_i)$, then q is incremented so...

$q = \sigma(T_i)$