String matching

Announcements

Programming assignment extended to Thursday

Exam next week: open book/notes
Covers: sorting, selection, greedy algorithms

Prefix vs suffix

w is a prefix of $\mathrm{x}=\mathrm{w}$ [x , means exists y s.t. wy $=x$ (also implies $|\mathrm{w}| \leq|x|$) (w] $\mathrm{y}=\mathrm{w}$ is a suffix of x)

An easy way to remember prefix vs suffix is: prefix = [, which looks like beginning of an array (similar suffix)

Finite automata

We built a graph, where arro s are: $\delta(\mathrm{q}, \mathrm{a})=\sigma\left(\mathrm{P}_{\mathrm{q}} \mathrm{a}\right)$
... with:
$\left.\sigma(\mathrm{x})=\max \left\{\mathrm{k}: \mathrm{P}_{\mathrm{k}}\right] \mathrm{x}\right\}$

Today we will prove corectness!

FA correctness

Lemma 32.2: $\sigma(x a) \leq \sigma(x)+1$ Obvious...

FA correctness

If x$] \mathrm{z}$ and y$] \mathrm{z}$, then:
(a) If $|x| \leq|y|, x] y$
(b) If $|\mathrm{y}| \leq|\mathrm{x}|, \mathrm{y}] \mathrm{x}$
(c) If $|x|=|y|, x=y$

FA correctness

Lemma 32.3: if $q=\sigma(x)$, then $\sigma(x a)=\sigma\left(\mathrm{P}_{\mathrm{q}} \mathrm{a}\right)$ Proof:
$\left.\mathrm{P}_{\mathrm{q}}\right] \mathrm{x}$ by def of $\mathrm{q}=\sigma(\mathrm{x})$, then $\mathrm{P}_{\mathrm{q}} \mathrm{a}$ xa
Let $\mathrm{r}=\sigma(\mathrm{xa})$ then P_{r}] xa and $\mathrm{r} \leq \mathrm{q}+1$
So $\left|\mathrm{P}_{\mathrm{r}}\right| \leq\left|\mathrm{P}_{\mathrm{q}} \mathrm{a}\right|$ means $\left.\mathrm{P}_{\mathrm{r}}\right] \mathrm{P}_{\mathrm{q}} \mathrm{a}$ $\sigma(x a) \leq \sigma\left(\mathrm{P}_{\mathrm{q}} \mathrm{a}\right)$,
$\left.P_{q} a\right]$ xa, so also $\sigma\left(P_{q} a\right) \leq \sigma(x a)$, thus equal

FA correctness

Theorem 32.4: if Φ is the final-state function, then $\Phi\left(\mathrm{T}_{\mathrm{i}}\right)=\sigma\left(\mathrm{T}_{\mathrm{i}}\right)$
Base: $\mathrm{T}_{0}=\varepsilon$, so $\Phi\left(\mathrm{T}_{0}\right)=0=\sigma\left(\mathrm{T}_{0}\right)$
Induction: $\Phi\left(\mathrm{T}_{\mathrm{i}+1}\right)=\Phi\left(\mathrm{T}_{\mathrm{i}} \mathrm{a}\right)=$
$\delta\left(\Phi\left(\mathrm{T}_{\mathrm{i}}\right), \mathrm{a}\right)=\sigma\left(\mathrm{P}_{\mathrm{q}} \mathrm{a}\right)=\sigma\left(\mathrm{T}_{\mathrm{i}} \mathrm{a}\right)=$
$\sigma\left(\mathrm{T}_{\mathrm{i}+1}\right)$, where $\mathrm{q}=\Phi\left(\mathrm{T}_{\mathrm{i}}\right)$

Knuth-Morris-Pratt

Faster computation by using
pattern symmetries within itself (vs transitions for each char/state)

The function π does this, namely $\pi(\mathrm{q})=\max \left(\mathrm{k}: \mathrm{k}<\mathrm{q}\right.$ and $\left.\left.\mathrm{P}_{\mathrm{k}}\right] \mathrm{P}_{\mathrm{q}}\right)$

Namely, π finds shifts of P on itself

Knuth-Morris-Pratt

i	1	2	3	4	5	6	7	8	9	10
$P[i]$	a	b	a	b	a	b	a	b	c	a
$\pi[i]$	0	0	1	2	3	4	5	6	0	1

(a)

(b)

Knuth-Morris-Pratt

Let's look at the example from last time:

P = "abaabca"
T = "abcabaabcaca"

First we need to compute π 's: Find shifts of pattern with itself

Knuth-Morris-Pratt

i
$\mathrm{P}[\mathrm{i}]$
1
2
34
5
6
7 a b a a b C a $\pi(\mathrm{i}) \quad 0 \quad 0 \quad 10$

Now we just need to run through the string T...
(See: FAsigma.py ... again)

Knuth-Morris-Pratt

T = "abcabaabcaca"

i	1	2	3	4	5	6	7
$\mathrm{P}[\mathrm{i}]$	a	b	a	a	b	c	a
$\pi(\mathrm{i})$	0	0	1	1	2	0	1

Start $q=0$, see $T[1]=' a '=P[q+1]=P[1]$
At $\mathrm{q}=1$, see $\mathrm{T}[2]=\mathrm{b} \mathrm{b}^{\prime}=\mathrm{P}[\mathrm{q}+1]=\mathrm{P}[2]$
At $q=2$, see T[3]='c'... not P[q+1] $\pi(q)=\pi(2)=0$. At 0 , stop follow π At $q=0$, see $T[4]={ }^{\prime} a^{\prime}=P[q+1]=P[1]$ At $q=1$, see $T[5]=' b '=P[q+1]=P[2]$

Knuth-Morris-Pratt

T = "abcabaabcaca"

i	1	2	3	4	5	6	7
$\mathrm{P}[\mathrm{i}]$	a	b	a	a	b	c	a
$\pi(\mathrm{i})$	0	0	1	1	2	0	1

At $q=1$, see $T[5]=' b=P[q+1]=P[2]$
At $q=2$, see $T[6]=' a '=P[q+1]=P[3]$
At $q=3$, see $T[7]=' a^{\prime}=P[q+1]=P[4]$ At $q=4$, see $T[8]=' b=P[q+1]=P[5]$ At $q=5$, see $T[9]=' c^{\prime}=P[q+1]=P[6]$ At $q=6$, see $T[10]=' a '=P[q+1]=p[7]$

Knuth-Morris-Pratt

T = "abcabaabcaca"

i	1	2	3	4	5	6	7
$\mathrm{P}[\mathrm{i}]$	a	b	a	a	b	c	a
$\pi(\mathrm{i})$	0	0	1	1	2	0	1

At $q=6$, see $T[10]={ }^{\prime} a^{\prime}=P[q+1]=p[7]$
Match! Set $q=\pi(q)=\pi(7)=1$
At $\mathrm{q}=1$, see $\mathrm{T}[11]=$ 'c'... not $\mathrm{P}[2]$ $\pi(q)=\pi(1)=0$. At 0 , stop follow π
At $q=0$, see $T[12]={ }^{\prime} a^{\prime}=P[q+1]=P[1]$ At $q=1$, but no more T, so done

Knuth-Morris-Pratt

Compute-Prefix-Function(P)
$\mathrm{k}=0, \pi[1]=0$
for $\mathrm{q}=2$ to $|\mathrm{P}|$
while $\mathrm{k}>0$ and $\mathrm{P}[\mathrm{k}+1] \neq \mathrm{P}[\mathrm{q}]$ $\mathrm{k}=\pi[\mathrm{k}]$
if $\mathrm{P}[\mathrm{k}+1]==\mathrm{P}[\mathrm{q}]$
$\mathrm{k}=\mathrm{k}+1$
$\pi[q]=\mathrm{k}$
// Runtime = ???

Knuth-Morris-Pratt

Compute-Prefix-Function(P)
$\mathrm{k}=0, \pi[1]=0$
for $\mathrm{q}=2$ to $|\mathrm{P}|$
while $\mathrm{k}>0$ and $\mathrm{P}[\mathrm{k}+1] \neq \mathrm{P}[\mathrm{q}]$ $\mathrm{k}=\pi[\mathrm{k}]$
if $\mathrm{P}[\mathrm{k}+1]==\mathrm{P}[\mathrm{q}]$
$\mathrm{k}=\mathrm{k}+1$
$\pi[q]=\mathrm{k}$
// Runtime $=\mathrm{O}(|\mathrm{P}|)$

Knuth-Morris-Pratt

KMP-Matcher(T,Р, т) // runtime?
$\mathrm{q}=0$
for $\mathrm{i}=1$ to $|\mathrm{T}|$
while $\mathrm{q}>0$ and $\mathrm{P}[\mathrm{q}+1] \neq \mathrm{T}[\mathrm{i}]$
$\mathrm{q}=\pi[\mathrm{q}]$
if $\mathrm{P}[\mathrm{q}+1]==\mathrm{T}[\mathrm{i}]$, then $\mathrm{q}=\mathrm{q}+1$
if $\mathrm{q}==|\mathrm{P}|$
match found, and set $q=\pi[q]$

Knuth-Morris-Pratt

The while loop decreases q, so it can only run as many times as q increases
q increases only if match in T, so at most |T| times
$\mathrm{O}(|\mathrm{T}|+|\mathrm{T}|)=\mathrm{O}(|\mathrm{T}|)$
(why not $|\mathrm{T}|^{*}|\mathrm{~T}|$?)

Knuth-Morris-Pratt

You try it!

$P=\{a, b, a, a\}$
$S=\{a, a, b, a, c, a, a, b, a, a, b, a, a, a\}$
What are π 's?
Where are matches?

KMP correctness

Let $\pi^{*}[q]=\{\pi[q], \pi[\pi[q]], \ldots 0\}$ Lemma 32.5: $\pi^{*}[\mathrm{q}]=\{\mathrm{k}: \mathrm{k}<\mathrm{q}$ and $\left.\left.\mathrm{P}_{\mathrm{k}}\right] \mathrm{P}_{\mathrm{q}}\right\}$
Remember:
$\pi(\mathrm{q})=\max \left(\mathrm{k}: \mathrm{k}<\mathrm{q}\right.$ and $\left.\left.\mathrm{P}_{\mathrm{k}}\right] \mathrm{P}_{\mathrm{q}}\right)$,
so fairly obvious (see next slide) (Tip: prove 2 sets equal by showing A subset B and B subset A)

KMP correctness

i	1	2	3	4	5	6	7	8	9	10
$P[i]$	a	b	a	b	a	b	a	b	c	a
$\pi[i]$	0	0	1	2	3	4	5	6	0	1

(a)

(b)

KMP correctness

Lemma 32.6: if $\pi[q]>0$, then $\pi[\mathrm{q}]-1$ in $\pi *[q-1]$
Proof: $\pi[\mathrm{q}]<\mathrm{q}$ and $\left.\mathrm{P}_{\pi[q]}\right] \mathrm{P}_{\mathrm{q}}$, so
$\pi[q]-1<\mathrm{q}-1$ and $\left.\mathrm{P}_{\pi[\mathrm{q}]-1}\right] \mathrm{P}_{\mathrm{q}-1}$ (we
know $\pi[q]>0$, so we can drop a char) Previous lemma says: $\pi^{*}[\mathrm{q}]=\{\mathrm{k}$: $\mathrm{k}<\mathrm{q}$ and $\left.\left.\mathrm{P}_{\mathrm{k}}\right] \mathrm{P}_{\mathrm{q}}\right\}$, above let $\mathrm{q}=\mathrm{q}-1$, $\mathrm{k}=\pi[\mathrm{q}]-1$, then done

KMP correctness

Let $\mathrm{E}_{\mathrm{q}-1}=\left\{\mathrm{k}\right.$ in $\left.\pi^{*}[\mathrm{q}-1]: \mathrm{P}[\mathrm{k}+1]=\mathrm{P}[\mathrm{q}]\right\}$
Corollary 32.7: $\pi[q]=\{0$ or
$1+\max \left\{\mathrm{k} \mathrm{in}_{\mathrm{q}-1}\right\}$ if $\mathrm{E}_{\mathrm{q}-1}$ not empty $\}$
Proof:
Case 1: $\mathrm{E}_{\mathrm{q}-1}$ empty, no match, so 0 Case 2: By def of $\mathrm{E}_{\mathrm{q}-1}, \mathrm{k}+1<\mathrm{q}$ and $\left.P_{k+1}\right] P_{q}$ implies $\pi[q] \geq 1+\max \left\{k\right.$ in $\left.E_{q-1}\right\}$

KMP correctness

$\left(\mathrm{E}_{\mathrm{q}-1}=\left\{\mathrm{k}\right.\right.$ in $\left.\left.\pi^{*}[\mathrm{q}-1]: \mathrm{P}[\mathrm{k}+1]=\mathrm{P}[\mathrm{q}]\right\}\right)$
Case 2 (cont): $\pi[q] \geq 1+\max \{k$ in
Let $r=\pi[q]-1$, then $\left.P_{r+1}\right] P_{q}$ so
$\mathrm{P}[\mathrm{r}+1]=\mathrm{P}[\mathrm{q}]$. Lemma 32.6 say
r in $\pi^{*}[q-1]$, so r in E_{q-1}.
Thus $\pi[\mathrm{q}] \leq 1+$ max $\left\{\mathrm{k}\right.$ in $\left.\mathrm{E}_{\mathrm{q}-1}\right\}$
Thus $\pi[q]=1+\max \left\{\mathrm{k}\right.$ in $\left.\mathrm{E}_{\mathrm{a}-1}\right\}$

KMP correctness

$\mathrm{k}=\pi[\mathrm{q}-1]$ at the start of the for loop in Compute-Prefix-Function alg The while loop finds $\max \left\{\mathrm{k}\right.$ in $\left.\mathrm{E}_{\mathrm{q}-1}\right\}$ and adds one for Corollary 32.7

If there $\mathrm{k}=0$, then either the max was
0 and it will be incremented to 1 or no match and will stay 0

KMP correctness

KMP alg correctness (map to FA alg): Base: both start with $\mathrm{q}=0$ Step ($q^{\prime}=\sigma\left(T_{i-1}\right)$):
Case $\sigma\left(\mathrm{T}_{\mathrm{i}}\right)=0$: $\mathrm{q}=0$ and same Case $\sigma\left(\mathrm{T}_{\mathrm{i}}\right)=\mathrm{q}^{\prime}+1$: while does not run, then increases q , so $\mathrm{q}=\mathrm{q}+1=\sigma\left(\mathrm{T}_{\mathrm{i}}\right)$ (continued)

KMP correctness

Step: $q^{\prime}=\sigma\left(\mathrm{T}_{\mathrm{i}-1}\right)$, Case $0<\sigma\left(\mathrm{T}_{\mathrm{i}}\right)<\mathrm{q}^{\prime}$:
while loop terminates when
$\mathrm{P}[\mathrm{q}+1]=\mathrm{T}[\mathrm{i}]$, so $\mathrm{q}+1=\sigma\left(\mathrm{P}_{\mathrm{q}} \mathrm{T}[\mathrm{i}]\right)$
$=\sigma\left(\mathrm{T}_{\mathrm{i}-1} \mathrm{~T}[\mathrm{i}]\right)$
$=\sigma\left(\mathrm{T}_{\mathrm{i}}\right)$, then q is incremented so... $\mathrm{q}=\sigma\left(\mathrm{T}_{\mathrm{i}}\right)$

