String matching
Knuth-Morris-Pratt

Faster computation by using pattern symmetries within itself (vs transitions for each char/state)

The function π does this, namely $\pi(q) = \max(k : k < q \text{ and } P_k \] P_q)$

Namely, π finds shifts of P on itself
Knuth-Morris-Pratt

Table

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P[i]$</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>$\pi[i]$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Diagram

(a)

(b)
Knuth-Morris-Pratt

T = “abcabaabcaca”

\begin{tabular}{c|cccccccc}
 i & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
 \hline
 P[i] & a & b & a & a & b & c & a \\
 \pi(i) & 0 & 0 & 1 & 1 & 2 & 0 & 1 \\
\end{tabular}

Start q=0, see $T[1] = 'a' = P[q+1] = P[1]$
At q=1, see $T[2] = 'b' = P[q+1] = P[2]$
At q=2, see $T[3] = 'c'...$ not $P[q+1]$
\[\pi(q) = \pi(2) = 0.\] At 0, stop follow \(\pi\)
At q=0, see $T[4] = 'a' = P[q+1] = P[1]$
At q=1, see $T[5] = 'b' = P[q+1] = P[2]$
Knuth-Morris-Pratt

T = “abcabaabcaca”

\[
\begin{array}{cccccccc}
 i & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
 P[i] & a & b & a & a & b & c & a \\
 \pi(i) & 0 & 0 & 1 & 1 & 2 & 0 & 1 \\
\end{array}
\]

At q=1, see \(T[5] = 'b' = P[q+1] = P[2] \)

At q=2, see \(T[6] = 'a' = P[q+1] = P[3] \)

At q=3, see \(T[7] = 'a' = P[q+1] = P[4] \)

At q=4, see \(T[8] = 'b' = P[q+1] = P[5] \)

At q=5, see \(T[9] = 'c' = P[q+1] = P[6] \)

At q=6, see \(T[10] = 'a' = P[q+1] = P[7] \)
Knuth-Morris-Pratt

T = “abcabaabcaca”

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>P[i]</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>π(i)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

At q=6, see T[10] = 'a' = P[q+1] = p[7]
Match! Set q = π(q) = π(7) = 1
At q=1, see T[11] = 'c'... not P[2]
π(q) = π(1) = 0. At 0, stop follow π
At q=0, see T[12] = 'a' = P[q+1] = P[1]
At q=1, but no more T, so done
Knuth-Morris-Pratt

Compute-Prefix-Function(P)

\[k = 0, \pi[1] = 0 \]

for \(q = 2 \) to \(|P| \)

\[\text{while } k > 0 \text{ and } P[k+1] \neq P[q] \]

\[k = \pi[k] \]

\[\text{if } P[k+1] = P[q] \]

\[k = k+1 \]

\[\pi[q] = k \] // Runtime = ???
Knuth-Morris-Pratt

Compute-Prefix-Function(P)

\[k = 0, \pi[1] = 0 \]

for \(q = 2 \) to \(|P| \)

\[\text{while } k > 0 \text{ and } P[k+1] \neq P[q] \]

\[k = \pi[k] \]

\[\text{if } P[k+1] == P[q] \]

\[k = k+1 \]

\[\pi[q]=k \quad \text{ // Runtime} = O(|P|) \]
KMP-Matcher(T,P,π) // runtime?
q = 0
for i = 1 to |T|
 while q > 0 and P[q+1] ≠ T[i]
 q = π[q]
 if P[q+1] == T[i], then q = q+1
if q == |P|
 match found, and set q = π[q]
Knuth-Morris-Pratt

The while loop decreases q, so it can only run as many times as q increases.

q increases only if match in T, so at most $|T|$ times.

$O(|T| + |T|) = O(|T|)$

(why not $|T|*|T|$?)
Knuth-Morris-Pratt

You try it!

P={a, b, a, a}
S={a, a, b, a, c, a, a, b, a, a, b, a, a, a}

What are π's?
Where are matches?
KMP correctness

Let $\pi^*[q] = \{\pi[q], \pi[\pi[q]], \ldots, 0\}$

Lemma 32.5: $\pi^*[q] = \{k : k < q \text{ and } P_k \subseteq P_q\}$

Remember:

$\pi(q) = \max(k : k < q \text{ and } P_k \subseteq P_q)$,

so fairly obvious (see next slide)

(Tip: prove 2 sets equal by showing $A \subseteq B$ and $B \subseteq A$)
KMP correctness

\[\pi^*[8] = \{6, 4, 2, 0\} \]
KMP correctness

Lemma 32.6: if $\pi[q] > 0$, then $\pi[q]-1$ in $\pi^*[q-1]$

Proof: $\pi[q] < q$ and $P_{\pi[q]} P_q$, so $\pi[q] - 1 < q - 1$ and $P_{\pi[q]-1} P_{q-1}$ (we know $\pi[q] > 0$, so we can drop a char)

Previous lemma says: $\pi^*[q] = \{ k : k < q$ and $P_k P_q \} $, above let $q=q-1, k=\pi[q]-1$, then done
KMP correctness

Let $E_{q-1} = \{k \text{ in } \pi^*[q-1] : P[k+1] = P[q] \}$

Corollary 32.7: $\pi[q] = \{0 \text{ or } 1+\max\{k \text{ in } E_{q-1}\} \text{ if } E_{q-1} \text{ not empty} \}$

Proof:
Case 1: E_{q-1} empty, no match, so 0
Case 2: By def of E_{q-1}, $k+1 < q$ and $P_{k+1} = P_q$ implies $\pi[q] \geq 1+\max\{k \text{ in } E_{q-1}\}$
KMP correctness

\((E_{q-1} = \{ k \text{ in } \pi^*[q-1] : P[k+1] = P[q] \}) \)

Case 2 (cont): \(\pi[q] \geq 1 + \max \{ k \text{ in } E_{q-1} \} \)

Let \(r = \pi[q] - 1 \), then \(P_{r+1} = P_q \) so \(P[r+1] = P[q] \). Lemma 32.6 says \(r \text{ in } \pi^*[q-1] \), so \(r \text{ in } E_{q-1} \).

Thus \(\pi[q] \leq 1 + \max \{ k \text{ in } E_{q-1} \} \)

Thus \(\pi[q] = 1 + \max \{ k \text{ in } E_{q-1} \} \)
KMP correctness

$k = \pi[q-1]$ at the start of the for loop in Compute-Prefix-Function alg. The while loop finds $\max\{k \in E_{q-1}\}$ and adds one for Corollary 32.7.

If there $k = 0$, then either the max was 0 and it will be incremented to 1 or no match and will stay 0.
KMP correctness

KMP alg correctness (map to FA alg):
Base: both start with $q=0$
Step ($q'=\sigma(T_{i-1})$):
Case $\sigma(T_i)=0$: $q=0$ and same
Case $\sigma(T_i)=q'+1$: while does not run, then increases q, so $q=q'+1=\sigma(T_i)$
(continued)
KMP correctness

Step: $q' = \sigma(T_{i-1})$, Case $0 < \sigma(T_i) \leq q'$:
while loop terminates when
$P[q+1] = T[i]$, so $q + 1 = \sigma(P_{q'} T[i])$
$= \sigma(T_{i-1} T[i])$
$= \sigma(T_i)$, then q is incremented so...
$q = \sigma(T_i)$