Unweighted directed graphs
Announcements

Midterm & gradescope
- will get an email today to register
 (username name is your email)
- tests should appear next Tuesday
 (nothing there now)
A directed graph G is a set of edges and vertices: $G = (V, E)$

Two common ways to represent a graph:
- Adjacency matrix
- Adjacency list
An adjacency matrix has a 1 in row i and column j if you can go from node i to node j
An adjacency list just makes lists out of each row (list of edges out from every vertex)
Graph

Difference between adjacency matrix and adjacency list?
Graph

Difference between adjacency matrix and adjacency list?

Matrix is more memory $O(|V|^2)$, less computation: $O(1)$ lookup

List is less memory $O(E+V)$ if sparse, more computation: $O(\text{branch factor})$
Graph

Adjacency matrix, $A=A^1$, represents the number of paths from row node to column node in 1 step.

Prove: A^n is the number of paths from row node to column node in n steps.
Graph

Proof: Induction

Base: $A^0 = I$, 0 steps from i is i

Induction: (Assume A^n, show A^{n+1})

Let $a_{i,j}^n = i^{th}$ row, j^{th} column of A^n

Then $a_{i,j}^{n+1} = \sum_k a_{i,k}^n a_{k,j}^1$

This is just matrix multiplication
Breadth First Search Overview

Create first-in-first-out (FIFO) queue to explore unvisited nodes

https://www.youtube.com/watch?v=nI0dT288VLs
Breadth First Search Overview

Consider the graph below

Suppose we wanted to get from “a” to “c” using breadth first search
To keep track of which nodes we have seen, we will do:

White nodes = never seen before
Grey nodes = nodes in Q
Black nodes = nodes that are done

To keep track of who first saw nodes I will make red arrows (π in book)
BFS Overview

First, we add the start to the queue, so $Q = \{a\}$

Then we will repeatedly take the left-most item in Q and add all of its neighbors (that we haven't seen yet) to the Q on the right
BFS Overview

Q = {a}
Left-most = a
White neighbors = b & d
New Q = {b, d}
BFS Overview

Q = \{b, d\}
Left-most = b
White neighbors = e
New Q = \{d, e\}
BFS Overview

\[Q = \{d, e\} \]

Left-most = d

White neighbors = c \& f \& g

New \(Q = \{e, c, f, g\} \)
BFS Overview

Q = \{e, c, f, g\}
Left-most = e
White neighbors = (none)
New Q = \{c, f, g\}
BFS Overview

Q = {c, f, g}
Left-most = c
Done! We found c, backtrack on red arrows to get path from “a”
Depth First Search Overview

Create first-in-last-out (FILO) queue to explore unvisited nodes
You can solve mazes by putting your left-hand on the wall and following it (i.e. left turns at every intersection)
Depth First Search Overview

You can solve mazes by putting your left-hand on the wall and following it (i.e. left turns at every intersection)
Depth First Search Overview

This is actually just depth first search
BFS and DFS in trees

Solve problems by making a tree of the state space

max

min

max
BFS and DFS in trees

Often times, fully exploring the state space is too costly (takes forever)

Chess: 10^{47} states (tree about 10^{123})
Go: 10^{171} states (tree about 10^{360})

At 1 million states per second...

Chess: 10^{109} years (past heat death
Go: 10^{346} years of universe)
BFS and DFS in trees

BFS prioritizes “exploring”
DFS prioritizes “exploiting”

White to move Black to move
BFS and DFS in trees

BFS benefits?

DFS benefits?
BFS and DFS in trees

BFS benefits?
-if stopped before full search, can evaluate best found

DFS benefits?
-uses less memory on complete search
BFS and DFS in graphs

BFS: shortest path from origin to any node

DFS: find graph structure

Both running time of $O(V+E)$
Breadth first search

BFS(G,s) // to find shortest path from s
for all v in V
 v.color=white, v.d=∞, v.π=NIL
s.color=grey, v.d=0
Enqueue(Q,s)
while(Q not empty)
 u = Dequeue(Q,s)
 for v in G.adj[u]
 if v.color == white
 v.color=grey, v.d=u.d+1, v.π=u
 Enqueue(Q,v)
u.color=black
Breadth first search

Let $\delta(s,v)$ be the shortest path from s to v

After running BFS you can find this path as: $v.\pi$ to $(v.\pi).\pi$ to ... s

(pseudo code on p. 601, recursion)
BFS correctness

Proof: contradiction
Assume $\delta(s,v) \neq v.d$
$v.d \geq \delta(s,v)$ (Lemma 22.2, induction)
Thus $v.d > \delta(s,v)$
Let u be previous node on $\delta(s,v)$
Thus $\delta(s,v) = \delta(s,u)+1$
and $\delta(s,u) = u.d$
Then $v.d > \delta(s,v) = \delta(s,u)+1 = u.d+1$
BFS correctness

\[v.d > \delta(s,v) = \delta(s,u)+1 = u.d+1 \]

Cases on color of \(v \) when \(u \) dequeue,

all cases invalidate top equation

Case white: alg sets \(v.d = u.d + 1 \)

Case black: already removed

thus \(v.d \leq u.d \) (corollary 22.4)

Case grey: exists \(w \) that dequeued \(v \),

\(v.d = w.d+1 \leq u.d+1 \) (corollary 22.4)
Depth first search

DFS can be implemented with BFS

We will mark both a start (colored grey) and finish (colored black) times

This helps us quantify properties of graphs
Depth first search

DFS(G)
for all v in V
 v.color=white, v.π=NIL

for each v in V
 if v.color==white
 DFS-Visit(G,v)
Depth first search

DFS-Visit(G,u)
time=time+1
u.d=time, u.color=grey
for each v in G.adj[u]
 if v.color == white
 v.π=u
 DFS-Visit(G,v)
 u.color=black, time=time+1, u.f=time
Depth first search

Edge markers:

Consider edge u to v

$B = \text{Edge to grey node} \ (u.f < v.f)$

$F = \text{Edge to black node} \ (u.f > v.f)$

$C = \text{Edge to black node} \ (u.d > v.f)$
Depth first search

DFS can do topographical sort

Run DFS, sort in decreasing finish time
Depth first search

DFS can find strongly connected components
Depth first search

Let G^T be G with edges reversed

Then to get strongly connected:
1. DFS(G) to get finish times
2. Compute G^T
3. DFS(G^T) on vertex in decreasing finish time
4. Each tree in forest SC component