Weighted graphs

Your mother is so fat,

1

even I cannot find the shortest path around her.

Weighted graph

Edges in weighted graph are assigned a weight: $w(v_1, v_2)$, where v_1, v_2 in V

If path $p = \langle v_0, v_1, ..., v_k \rangle$ then the weight is: $w(p) = \sum_{i=1}^{k} (v_{i-1}, v_i)$ Shortest Path: $\delta(u,v)$: $\min\{w(p): v_0 = u, v_k = v)\}$

Shortest paths

Today we will look at <u>single-source</u> <u>shorted paths</u>

This finds the shortest path from some starting vertex, s, to any other vertex on the graph (if it exists)

This creates G_{π} , the shortest path tree

Shortest paths

Optimal substructure: Let $\delta(v_0, v_k) = p$, then for all $0 \le i \le j \le k$, $\delta(v_i, v_j) = p_{i,j} =$

$$< v_i, v_{i+1}, ..., v_j >$$

Proof?

Where have we seen this before?

Shortest paths

Optimal substructure: Let $\delta(v_0, v_k) = p$, then for all $0 \le i \le j \le k$, $\delta(v_i, v_j) = p_{i,j} =$

$$< v_{i}, v_{i+1}, ..., v_{j} >$$

Proof? Contradiction! Suppose $w(p'_{i,j}) < p_{i,j}$, then let $p'_{0,k} = p_{0,i} p'_{i,j} p_{j,k}$ then $w(p'_{0,k}) < w(p)$

Shortest path

We will do the same thing we have done before with BFS and DFS:

Makes a queue and put in/pull out

Two major differences: (1) How to remove from queue (min) (2) Update "grey" vertexes ("relax")

Relaxation

We will only do <u>relaxation</u> on the values v.d (min weight) for vertex v

Relax(u,v,w) (i.e. min() function) if(v.d > u.d + w(u,v)) v.d = u.d+w(u,v) v. π =u

Relaxation

We will assume all vertices start with v.d= ∞ ,v. π =NIL except s, s.d=0

This will take O(|V|) time

This will not effect the asymptotic runtime as it will be at least O(|V|) to find single-source shortest path

Relaxation

Relaxation properties:

- 1. $\delta(s,v) \le \delta(s,u) + \delta(u,v)$ (triangle inequality) 2. v.d $\ge \delta(s,v)$, v.d is monotonically decreasing
- 3. if no path, v.d = $\delta(s,v) = \infty$
- 4. if $\delta(s,v)$, when $(v.\pi).d=\delta(s,v.\pi)$ then relax $(v.\pi,v,w)$ causes $v.d=\delta(s,v)$
- 5. if $\delta(v_0, v_k) = p_{0,k}$, then when relaxed in order (v_0, v_1) , (v_1, v_2) , ... (v_{k-1}, v_k) then $v_k \cdot d = \delta(v_0, v_k)$ even if other relax happen
- 6. when v.d= δ (s,v) for all v in V, G_{π} is shortest path tree rooted at s

Directed Acyclic Graphs

DFS can do topological sort (DAG)

Run DFS, sort in decreasing finish time

Directed Acyclic Graphs

DAG-shortest-paths(G,w,s) topologically sort G initialize graph from s for each u in V in topological order for each v in G.Adj[u] Relax(u,v,w)

Runtime: O(|V| + |E|)

Directed Acyclic Graphs

Correctness:

Prove it!

Directed Acyclic Graphs

Correctness: By definition of topological order, When relaxing vertex v, we have already relaxed any preceding vertices

So by relaxation property 5, we have found the shortest path to all v

BFS (unweighted graphs)

Create FIFO queue to explore unvisited nodes

Dijkstra's algorithm is the BFS equivalent for non-negative weight graphs

Dijkstra(G,w,s) initialize G from s Q = G.V, S = emptywhile Q not empty u = Extract-min(Q) S optional $S = S U \{u\}$ for each v int G.Adj[u] relax(u,v,w)

Runtime?

Runtime: Extract-min() run |V| times Relax runs Decrease-key() |E| times Both take O(lg n) time

So O((|V| + |E|) lg |V|) time (can get to O(|V|lg|V| + E) using Fibonacci heaps)

Runtime note: If G is almost fully connected, $|\mathbf{E}| \approx |\mathbf{V}|^2$

Use a simple array to store v.d Extract-min() = O(|V|) Decrease-key() = O(1) total: O(|V|² + E)

Correctness: (p.660) Sufficient to prove when u added to S, u.d = $\delta(s,u)$

Base: s added to S first, s.d=0= δ (s,s)

Termination: Loop ends after Q is empty, so V=S and we done

Step: Assume v in S has v.d = $\delta(s,v)$ Let y be the first vertex outside S on path of $\delta(s,u)$

We know by relaxation property 4, that $\delta(s,y)=y.d$ (optimal sub-structure)

 $y.d = \delta(s,y) \le \delta(s,u) = u.d$, as $w(p) \ge 0$

Step: Assume v in S has v.d = $\delta(s,v)$ But as u was picked before y, u.d \leq y.d, combined with y.d \leq u.d

y.d=u.d

Thus y.d = $\delta(s,y) = \delta(s,u) = u.d$