

Weighted graphs

1

Weighted graph

Edges in weighted graph are assigned
a weight: w(v

1
, v

2
), where v

1
, v

2
 in V

If path p = <v
0
, v

1
, ... v

k
> then the

weight is: w(p) = ∑k
i=1

(v
i-1

,v
i
)

Shortest Path:
δ(u,v): min{w(p) : v

0
=u,v

k
=v)}

3

Shortest paths

Today we will look at single-source
shorted paths

This finds the shortest path from
some starting vertex, s, to any other
vertex on the graph (if it exists)

This creates G
π
, the shortest path tree

4

Shortest paths

Optimal substructure: Let δ(v
0
,v

k
)=p,

then for all 0 < i < j < k, δ(v
i
,v

j
)=p

i,j
=

<v
i
, v

i+1
, ... v

j
>

Proof?

Where have we seen this before?

5

Shortest paths

Optimal substructure: Let δ(v
0
,v

k
)=p,

then for all 0 < i < j < k, δ(v
i
,v

j
)=p

i,j
=

<v
i
, v

i+1
, ... v

j
>

Proof? Contradiction!
Suppose w(p'

i,j
) < p

i,j
, then let

p'
0,k

 = p
0,i

 p'
i,j
 p

j,k
 then w(p'

0,k
) < w(p)

6

Shortest path

We will do the same thing we have
done before with BFS and DFS:

Makes a queue and put in/pull out

Two major differences:
(1) How to remove from queue (min)
(2) Update “grey” vertexes (“relax”)

7

Relaxation

We will only do relaxation on the
values v.d (min weight) for vertex v

Relax(u,v,w)
if(v.d > u.d + w(u,v))

v.d = u.d+w(u,v)
v.π=u

8

(i.e. min() function)

Relaxation

We will assume all vertices start with
v.d=∞,v.π=NIL except s, s.d=0

This will take O(|V|) time

This will not effect the asymptotic
runtime as it will be at least O(|V|) to
find single-source shortest path

9

Relaxation

Relaxation properties:
1. δ(s,v) < δ(s,u) + δ(u,v) (triangle inequality)
2. v.d > δ(s,v), v.d is monotonically decreasing
3. if no path, v.d =δ(s,v) =∞
4. if δ(s,v), when (v.π).d=δ(s,v.π) then

relax(v.π,v,w) causes v.d=δ(s,v)
5. if δ(v

0
,v

k
) = p

0,k
, then when relaxed in

order (v
0
, v

1
), (v

1
, v

2
), ... (v

k-1
,v

k
) then

v
k
.d=δ(v

0
,v

k
) even if other relax happen

6. when v.d=δ(s,v) for all v in V, G
π
 is shortest

path tree rooted at s

10

Directed Acyclic Graphs

DFS can do topological sort (DAG)

Run DFS, sort in decreasing finish time

11

DAG-shortest-paths(G,w,s)
topologically sort G
initialize graph from s
for each u in V in topological order

for each v in G.Adj[u]
Relax(u,v,w)

Runtime: O(|V| + |E|)

Directed Acyclic Graphs
12

Depth first search
13

Correctness:

Prove it!

Directed Acyclic Graphs
14

Correctness:
By definition of topological order,
When relaxing vertex v, we have
already relaxed any preceding
vertices

So by relaxation property 5, we have
found the shortest path to all v

Directed Acyclic Graphs
15

BFS (unweighted graphs)

Create FIFO queue to explore
unvisited nodes

16

Dijkstra

Dijkstra's algorithm is the BFS
equivalent for non-negative weight
graphs

17

Dijkstra

Dijkstra(G,w,s)
initialize G from s
Q = G.V, S = empty
while Q not empty

u = Extract-min(Q)
S = S U {u}
for each v int G.Adj[u]

relax(u,v,w)

S optional

18

Dijkstra
19

Dijkstra

Runtime?

20

Dijkstra

Runtime:
Extract-min() run |V| times
Relax runs Decrease-key() |E| times
Both take O(lg n) time

So O((|V| + |E|) lg |V|) time
(can get to O(|V|lg|V| + E) using
Fibonacci heaps)

21

Dijkstra

Runtime note:
If G is almost fully connected,
|E| ≈ |V|2

Use a simple array to store v.d
Extract-min() = O(|V|)
Decrease-key() = O(1)
total: O(|V|2 + E)

22

Dijkstra

Correctness: (p.660)
Sufficient to prove when u added to
S, u.d = δ(s,u)

Base: s added to S first, s.d=0=δ(s,s)

Termination: Loop ends after Q is
empty, so V=S and we done

23

Dijkstra

Step: Assume v in S has v.d = δ(s,v)
Let y be the first vertex outside S
on path of δ(s,u)

We know by relaxation property 4,
that δ(s,y)=y.d (optimal sub-structure)

y.d = δ(s,y) < δ(s,u) = u.d, as w(p)>0

24

Dijkstra

Step: Assume v in S has v.d = δ(s,v)
But as u was picked before y,
u.d < y.d, combined with y.d < u.d

y.d=u.d

Thus y.d = δ(s,y) = δ(s,u) = u.d

25

