
Rational Agents (Ch. 2)



Extra credit!

Occasionally we will have in-class
activities for extra credit (+3%)

You do not need to have a full or
correct answer to get credit, but you
do need to attempt the problem 
(and show work)



Rational agent

An agent/robot must be able to perceive and
interact with the environment

A rational agent is one that always takes 
the best action (possibly expected best)

Agent =



Rational agent

Consider the case of a simple vacuum agent

Environment: [state A] and [state B], both 
possibly with dirt that does not respawn

Actions: [move left], [move right] or [suck]
Perception: current location, [dirty or clean] 



Rational agent

An agent's percept is the sequence of 
perceptions that it has seen up to this point

For the vacuum agent, one percept might be:
[A, Dirty], [A, Clean], [B, Dirty]



Rational agent

There are two ways to describe an agent's
action using the percept:

1. Agent function = directly map a percept to
action

2. Agent program = logic dictating next action
(percept as an input to logic)

The agent function is basically a look-up table,
and is typically much larger



Rational agent

An agent function for vacuum agent:

A corresponding agent program:
if [Dirty], return [Suck]
if at [state A], return [move right]
if at [state B], return [move left]



Rational agent

In order to determine if the vacuum agent
is rational I need a performance measure

Under which of these metrics is the agent 
program on the previous slide rational?
1. Have a clean floor in A and B
2. Have a clean floor as fast as possible
3. Have a clean floor with moving as little as

possible
4. Maximize the amount of time sucking



Rational agent

You want to express the performance measure
in terms of the environment not the agent

For example, if we describe a measure as:
“Suck up the most dirt”

A rational vacuum agent would suck up dirt
then dump it back to be sucked up again... 

This will not lead to a clean floor



Rational agent

Performance measure: “-50 points per time 
step a state is dirty and -1 point per move”

Is our agent rational (with the proposed agent
program) if...

1. Dirt does not reappear
2. Dirt always reappears the next time step
3. Dirt has a 30% chance of reappearing
4. Dirt reappears but at an unknown rate



Rational agent

If we do not know how often dirt will reappear,
a rational agent might need to learn

Learning can use prior knowledge to estimate
how often dirt tends to reappear, but should 
value actual observations more (its percept)

The agent might need to explore and take
sub-optimal short-term actions to find a better
long-term solution



Rational agent

To recap, a rational agent depends on:
1.  Performance measure
2.  Prior knowledge of the environment
3.  Actions available
4.  Percept to current time

You need to know all of these before you
can determine rationality



Rational agent

To fully specify the situation we need to know
about the task environment too
(abbreviated PEAS)

Performance measure
Environment
Actuators
Sensors



Rational agent

Particle game:
http://www.ragdollsoft.com/particles/



Rational agent

Agent 
type

Perfor
mance

Environ
ment

Actuator
s

Sensors

Vacuum time to 
clean

A, B, dirt suck, 
move 

dust 
sensor

Student GPA, 
honors

campus,
dorm

do HW,
take test

eye, ear,
hand

Particles time 
alive

boarder,
red balls

move 
mouse

screen-
shot

http://www.ragdollsoft.com/particles/


Environment classification

Environments can be further classified on
the following characteristics:(right side harder)

1. Fully vs. partially observable
2. Single vs. multi-agent
3. Deterministic vs. stochastic
4. Episodic vs. sequential
5. Static vs. dynamic
6. Discrete vs. continuous
7. Known vs. unknown



Environment classification

In a fully observable environment, agents can
see every part.

Agents can only see part of the environment
if it is partially observable

Full Partial



Environment classification

If your agent is the only one, the environment
is a single agent environment

More than one is a multi-agent environment
(possibly cooperative or competitive)

single

multi



Environment classification

If your state+action has a known effect in the
environment, it is deterministic

If actions have a distribution (probability) of
possible effects, it is stochastic

deterministic

stochastic



Environment classification

An episodic environment is where the previous
action does not effect the next observation
(i.e. independent)

If there is the next action depends on the
previous, the environment is sequential

episodic

sequential



Environment classification

If the environment only changes when you
make an action, it is static

a dynamic environment can change while
your agent is thinking or observing

dynamicstatic



Environment classification

Discrete = separate/distinct (events)
Continuous = fluid transition (between events)

This classification can applies: agent's percept
and actions, environment's time and states

continuous (state)discrete (state)



Environment classification

Known = agent's actions have known effects
on the environment

Unknown = the actions have an initially
unknown effect on the environment (can learn)

know how to stop
do not
know
how
to stop



Environment classification

Pick a game/hobby/sport/pastime/whatever
and describe both the PEAS and whether the
environment/agent is:
1. Fully vs. partially observable
2. Single vs. multi-agent
3. Deterministic vs. stochastic
4. Episodic vs. sequential
5. Static vs. dynamic
6. Discrete vs. continuous
7. Known vs. unknown



Environment classification

Agent 
type

Perfor
mance

Environ
ment

Actuator
s

Sensors

Particles time 
alive

boarder,
red balls

move 
mouse

screen-
shot

Fully observable, single agent, deterministic,
sequential, dynamic, 
continuous (time, state, action, and percept), 
known (to me!)



Agent models

Can also classify agents into four categories:

1. Simple reflex
2. Model-based reflex
3. Goal based
4. Utility based

Top is typically simpler and harder to adapt
to similar problems, while bottom is more
general representations



Agent models

A simple reflex agents acts only on the most 
recent part of the percept and not the whole 
history

Our vacuum agent is of this type, as it only
looks at the current state and not any previous

These can be generalized as: 
“if state = ____ then do action ____”
(often can fail or loop infinitely)



Agent models

A model-based reflex agent needs to have a 
representation of the environment in memory
(called internal state)

This internal state is updated with each 
observation and then dictates actions

The degree that the environment is modeled
is up to the agent/designer (a single bit vs.
a full representation)



Agent models

This internal state should be from the agent's
perspective, not a global perspective
(as same global state might have different
actions)

Consider these pictures of a maze:
Which way to go? Pic 1 Pic 2



Agent models

The global perspective is the same, but the
agents could have different goals (stars)

Goals are not global information

Pic 1 Pic 2



Agent models

For the vacuum agent if the dirt does not 
reappear, then we do not want to keep moving

The simple reflex agent program cannot do
this, so we would have to have some memory
(or model)

This could be as simple as a flag indicating
whether or not we have checked the other state



Agent models

The goal based agent is more general than
the model-based agent

In addition to the environment model, it has a
goal indicating a desired configuration

Abstracting to a goals generalizes your method
to different (similar) problems
(for example, a model-based agent could solve 
one maze, but a goal can solve any maze)



Agent models

A utility based agent maps the sequence of 
states (or actions) to a real value

Goals can describe general terms as “success” 
or “failure”, but there is no degree of success

In the maze example, a goal based agent can
find the exit.  But a utility based agent can find
the shortest path to the exit



Agent models

What is the agent model of particles?

Think of a way to improve the agent and
describe what model it is now



Agent learning

For many complicated problems (facial 
recognition, high degree of freedom robot 
movement), it would be too hard to explicitly
tell the agent what to do

Instead, we build a framework to learn the
problem and let the agent decide what to do

This is less work and allows the agent to adapt
if the environment changes



Agent learning

There are four main components to learning:
1. Critic = evaluates how well the agent is

doing and whether it needs to change actions
(similar to performance measure)

2. Learning element = incorporate new 
information to improve agent

3. Performance element = selects action agent
will do (exploit known best solution)

4. Problem generator = find new solutions
(explore problem space for better solution)



State structure

States can be generalized into three categories:

1. Atomic (Ch. 3-5, 15, 17) 
2. Factored (Ch. 6-7, 10-11, 13-16, 18, 20-21)
3. Structured (Ch. 8-9, 12, 14, 19, 22-23)
(Top are simpler, bottom are more general)

Occam's razor = if two results are identical,
use the simpler approach



State structure

An atomic state has no sub-parts and acts
as a simple unique identifier

An example is an elevator:
Elevator = agent (actions = up/down)
Floor = state

In this example, when someone requests the
elevator on floor 7, the only information the
agent has is what floor it currently is on



State structure

Another example of an atomic representation
is simple path finding:
If we start (here) in Amundson B75, how 
would you get to Keller's CS office?

Am. B75 -> Hallway1 -> Tunnel -> Hallway2
-> Elevator -> Hallway3 -> CS office

The words above hold no special meaning
other than differentiating from each other



State structure

A factored state has a fixed number of
variables/attributes associated with it

Our simple vacuum example is factored, as
each state has an id (A or B) along with a
“dirty” property

In particles, each state has a set of red balls
with locations along with the blue ball location



State structure

Structured states simply describe objects and
their relationship to others

Suppose we have 3 blocks: A, B and C
We could describe: A on top of B, C next to B

A factored representation would have to 
enumerate all possible configurations of
A, B and C to be as representative



State structure

We will start using structured approaches
when we deal with logic:

Summer implies Warm
Warm implies T-Shirt

The current state might be:
!Summer (¬Summer)
but the states have intrinsic relations between
each other (not just actions)


