
Planning (Ch. 10)

Graph Plan

A heuristic we will go over in detail is graph
planning, which tries to do all possible actions
at each step

The graph plan heuristic is nice because it is
always admissible and computable in P time

The basic idea of graph plan is to track all
the statements that could be true at any time

Graph Plan

Graph plan is an underestimate because once
a relation/literal is added, it is never removed

Unlike the “remove negative effects” heuristic,
we allow both negative and positive effects

But we can also use any preconditions that
have been found anytime before (not quite as
open as completely removing them)

Graph Plan

These simplifications/relaxations probably
make the problem too easy

So we also track pairs of both actions and
literals that are in conflict (called mutexes)

First, let's go over how to convert actions
and relations into graph plan, then later
we will add in the mutexes

Graph Plan

You start with the relations of the initial state
on the left (now explicitly stating negatives)

Then you add “no actions” which simply
keep all the relationships the same but move
them to the right

Then you add actions, which you do by linking
preconditions on the left to resulting effects
on the right (adding any new ones)

Graph Plan

Graph plan will alternate between possible
facts (“state level”) and actions (“action level”)

initial
state

state level 0=

Graph Plan

Consider this problem:

Graph Plan

Consider this problem:

H H H

┐H ┐H

S S S

┐S ┐S
C

E

C

E

Sl

Graph Plan

Each set of relations/literals are what we call
levels of the graph plan, S = states, A = actions

State level 0 is S
0
 = {H, S}

A
0
 = {C, E, all “no ops”}

S
1
 = {H, ┐H, S, ┐S}

A
1
 = {C, E, Sl, all “no ops”}

S
2
 = {H, ┐H, S, ┐S}

Graph Plan

You do it! (show 3 state and 2 action levels)

Graph Plan
 D D

┐D ┐D ┐D

 S S

┐S ┐S ┐S

 M M

┐M ┐M ┐M

Sc

J

Sc

P

J

Graph Plan

The graph plan allows multiple actions to be
done in a single turn, which is why S

1
 has both

┐Sleepy(me) and ┐Hungry(me)

You keep building the graph until either:
(1) You find your goal (more on this later)
(2) The graph converges (i.e. states, actions

and mutexes stop changing)

Mutexes

A mutex are two things that cannot be together
(i.e. cannot happen or be true simultaneously)

You can put mutexes:
1. Between two relationships/literals
2. Between actions

There are different rules for doing mutexes
between actions vs. relations

Mutexes: actions

For all of these cases I will assume actions
two actions: A1 and A2

These actions have preconditions and effects:
Pre(A1) and Effect(A1), respectively

For example, I will abbreviate below as:

Mutexes: actions

1.
2.
3.
H H H

┐H ┐H

S S S

┐S ┐S
C

E

C

E

Sl

Mutex Action rules:

Mutexes: actions

1.
2.
3.
H H H

┐H ┐H

S S S

┐S ┐S
C

E

C

E

Sl

Mutex Action rules:

Mutexes: actions

1.
2.
3.
H H H

┐H ┐H

S S S

┐S ┐S
C

E

C

E

Sl

Mutex Action rules:

Mutexes: actions

1.
2.
3.
H H H

┐H ┐H

S S S

┐S ┐S
C

E

C

E

Sl

Mutex Action rules:

Mutexes: actions

1.
2.
3.
H H H

┐H ┐H

S S S

┐S ┐S
C

E

C

E

Sl

Mutex Action rules:

Mutexes: actions

1.
2.
3.
H H H

┐H ┐H

S S S

┐S ┐S
C

E

C

E

Sl

Mutex Action rules:

Mutexes: actions

1.
2.
3.
H H H

┐H ┐H

S S S

┐S ┐S
C

E

C

E

Sl

Mutex Action rules:

Mutexes: states

There are 2 (easier) rules for states, but unlike
action mutexes they can change across levels

1. Opposite relations are mutexes (x and ┐x)
2. If there are mutexes between all possible

actions that lead to a pair of states

Can rephrase second rule: All pairs of states
start with a mutex, but remove mutex if there
are un-mutexes actions that lead to state pair

Mutexes: states

1. Opposite relations are mutexes (x and ┐x)
2. If there are mutexes between all possible

actions that lead to a pair of states
H H H

┐H ┐H

S S S

┐S ┐S
C

E

C

E

Sl

Mutexes: states

1. Opposite relations are mutexes (x and ┐x)
2. If there are mutexes between all possible

actions that lead to a pair of states
H H H

┐H ┐H

S S S

┐S ┐S
C

E

C

E

Sl

Mutexes: states

1. Opposite relations are mutexes (x and ┐x)
2. If there are mutexes between all possible

actions that lead to a pair of states
H H H

┐H ┐H

S S S

┐S ┐S
C

E

C

E

Sl

None...
but if we
remove
coffee...

Mutexes: states

1. Opposite relations are mutexes (x and ┐x)
2. If there are mutexes between all possible

actions that lead to a pair of states
H H H

┐H ┐H

S S S

┐S

E E

Sl

Sl has mutex with both
E and NoOp(┐H)

This mutex
will be gone
on the next
level (as
you can
eat again)

Mutexes: states

1. Opposite relations are mutexes (x and ┐x)
2. If there are mutexes between all possible

actions that lead to a pair of states
H H H

┐H ┐H

S S S

┐S

E E

Sl

Mutexes: actions

You do it!

Mutexes: actions
 D D

┐D ┐D ┐D

 S S

┐S ┐S ┐S

 M M

┐M ┐M ┐M

Sc

J

Sc

P

J

Mutexes: actions
 D D

┐D ┐D ┐D

 S S

┐S ┐S ┐S

 M M

┐M ┐M ┐M

Sc

J

Sc

P

J

Non-trivial
mutexes:
(SC, P),
(J, P),
(SC, J),
(P,┐D&M),
(SC,┐D&┐S),
(J,┐M&S)

GraphPlan

GraphPlan can be computed in O(n(a+l)2),
where n = levels before convergence
a = number of actions
l = number of relations/literals/states
(square is due to needing to check all pairs)

The original planning problem is PSPACE,
which is known to be harder than NP

GraphPlan: states

Let's consider this problem:

GraphPlan: states

C

G

Q

M

W

D

T

F

C
┐C

G
┐G

Q
┐Q
P

Mutexes

C

G

Q

M

W

D

T

F

C
┐C

G
┐G

Q
┐Q
P

Possible state pairs:
F, C C, Q
F,┐C C, ┐Q
F, G C, P
F, ┐G ┐C, G
F, Q ┐C, ┐G
F, ┐Q ┐C, Q
F, P ┐C, ┐Q
C, ┐C ┐C, P
C, G ... (more)
C, ┐G

Mutexes

C

G

Q

M

W

D

T

F

C
┐C

G
┐G

Q
┐Q
P

Make
one
more
level
here!

M

W

D

T

F

C
┐C

G
┐G

Q
┐Q
P

Mutexes

C

G

Q

M

W

D

T

F

C
┐C

G
┐G

Q
┐Q
P

Blue mutexes
dissappear

Pink = new mutex

GraphPlan as heuristic

GraphPlan is optimistic, so if any pair of goal
states are in mutex, the goal is impossible

3 basic ways to use GraphPlan as heuristic:
(1) Maximum level of all goals
(2) Sum of level of all goals (not admissible)
(3) Level where no pair of goals is in mutex

(1) and (2) do not require any mutexes, but are
less accurate (quick 'n' dirty)

GraphPlan as heuristic

For heuristics (1) and (2), we relax as such:
1. Multiple actions per step, so can only take

fewer steps to reach same result
2. Never remove any states, so the number

of possible states only increases

This is a valid simplification of the problem,
but it is often too simplistic directly

GraphPlan as heuristic

Heuristic (1) directly uses this relaxation and
finds the first time when all 3 goals appear
at a state level

(2) tries to sum the levels of each individual
first appearance, which is not admissible
(but works well if they are independent parts)

Our problem: goal={Food, ┐Garbage, Present}
First appearance: F=1, ┐G=1, P=1

GraphPlan: states

C

G

Q

M

W

D

T

F

C
┐C

G
┐G

Q
┐Q
P

Level 0: Level 1:

Heuristic (1):
Max(1,1,1) = 1

Heuristic (2):
1+1+1=3

GraphPlan as heuristic

Often the problem is too trivial with just
those two simplifications

So we add in mutexes to keep track of invalid
pairs of states/actions

This is still a simplification, as only impossible
state/action pairs in the original problem are
in mutex in the relaxation

GraphPlan as heuristic

Heuristic (3) looks to find the first time none
of the goal pairs are in mutex

For our problem, the goal states are:
(Food, ┐Garbage, Present)

So all pairs that need to have no mutex:
(F, ┐G), (F, P), (┐G, P)

Mutexes

C

G

Q

M

W

D

T

F

C
┐C

G
┐G

Q
┐Q
P

None of the
pairs are in
mutex at
level 1

This is our
heuristic
estimate

Finding a solution

GraphPlan can also be used to find a solution:
(1) Converting to a CSP
(2) Backwards search

Both of these ways can be run once GraphPlan
has all goal pairs not in mutex (or converges)

Additionally, you might need to extend
it out a few more levels further to find a
solution (as GraphPlan underestimates)

GraphPlan as CSP

Variables = states, Domains = actions out of
Constraints = mutexes & preconditions

from Do & Kambhampati

Finding a solution

For backward search, attempt to find arrows
back to the initial state(without conflict/mutex)

This backwards search is similar to backward
chaining in first-order logic (depth first search)

If this fails to find a solution, mark this level
and all the goals not satisfied as: (level, goals)

(level, goals) stops changing, no solution

Graph Plan

Remember this from last time...

Graph Plan
 D D D

┐D ┐D ┐D ┐D

 S S S

┐S ┐S ┐S ┐S

 M M M

┐M ┐M ┐M ┐M

Sc

J

Sc

P

J

Sc

P

J

Ask:
┐D^S^┐M
Find first
no mutex...

Graph Plan
 D D D

┐D ┐D ┐D ┐D

 S S S

┐S ┐S ┐S ┐S

 M M M

┐M ┐M ┐M ┐M

Sc

J

Sc

P

J

Sc

P

J

Ask:
┐D^S^┐M
... then back
search

Error!
actions
in
mutex

1.2.3.

4.5.

6.

Graph Plan
 D D D

┐D ┐D ┐D ┐D

 S S S

┐S ┐S ┐S ┐S

 M M M

┐M ┐M ┐M ┐M

Sc

J

Sc

P

J

Sc

P

J

Ask:
┐D^S^┐M
try different
back path... 1.

2.

Error states
in mutex

4.

3.
3.

Graph Plan
 D D D

┐D ┐D ┐D ┐D

 S S S

┐S ┐S ┐S ┐S

 M M M

┐M ┐M ┐M ┐M

Sc

J

Sc

P

J

Sc

P

J

Ask:
┐D^S^┐M
found
solution!

Finding a solution

Formally, the algorithm is:

graph = initial
noGoods = empty table (hash)
for level = 0 to infinity

if all goal pairs not in mutex
solution = DFS with noGoods
if success, return paths

if graph & noGoods converged, return fail
graaph = expand graph

M

W

D

T

F

C
┐C

G
┐G

Q
┐Q
P

Mutexes

C

G

Q

M

W

D

T

F

C
┐C

G
┐G

Q
┐Q
P

You try it!

