Planning (Ch. 10)

Graph Plan

A heuristic we will go over in detail is graph planning, which tries to do all possible actions at each step

The graph plan heuristic is nice because it is always admissible and computable in P time

The basic idea of graph plan is to track all the statements that could be true at any time

Graph Plan

Graph plan is an underestimate because once a relation/literal is added, it is never removed

Unlike the "remove negative effects" heuristic, we allow both negative and positive effects

But we can also use any preconditions that have been found anytime before (not quite as open as completely removing them)

Graph Plan

These simplifications/relaxations probably make the problem too easy

So we also track pairs of both actions and literals that are in conflict (called mutexes)

First, let's go over how to convert actions and relations into graph plan, then later we will add in the mutexes

Graph Plan

You start with the relations of the initial state on the left (now explicitly stating negatives)

Then you add "no actions" which simply keep all the relationships the same but move them to the right

Then you add actions, which you do by linking preconditions on the left to resulting effects on the right (adding any new ones)

Graph Plan

Graph plan will alternate between possible facts ("state level") and actions ("action level")

Graph Plan

Consider this problem:

Initial: Sleepy $(m e) \wedge$ Hungry $(m e)$
Goal: $\neg \operatorname{Sleepy}(m e) \wedge \neg$ Hungry $(m e)$
Action(Eat $(x), \quad$ Action(Coffee (x),
Precondition: Hungry (x), Precondition: ,
Effect: $\neg H u n g r y(x))$
Effect: $\neg \operatorname{Sleepy}(x))$
Action(Sleep (x),
Precondition: Sleepy $(x) \wedge \neg \operatorname{Hungr}(x)$,
Effect: $\neg \operatorname{Sleepy}(x) \wedge$ Hungry $(x))$

Graph Plan

Consider this problem:

Graph Plan

Each set of relations/literals are what we call levels of the graph plan, $\mathrm{S}=$ states, $\mathrm{A}=$ actions

State level 0 is $\mathrm{S}_{0}=\{\mathrm{H}, \mathrm{S}\}$
$A_{0}=\{C, E$, all "no ops" $\}$
$\left.\left.S_{1}=\{H\rceil H, S,,\right\rceil S\right\}$
$A_{1}=\{C, E, S l$, all "no ops" $\}$
$\left.\left.S_{2}=\{H\rceil H, S,,\right\rceil S\right\}$

Graph Plan

You do it! (show 3 state and 2 action levels) Initial: $\neg \operatorname{Money}(m e) \wedge \neg \operatorname{Smart}(m e) \wedge \neg \operatorname{Debt}(m e)$ Goal: $\operatorname{Money}(m e) \wedge \operatorname{Smart}(m e) \wedge \neg \operatorname{Debt}(m e)$ Action (School(x),

Precondition: ,
Effect: $\operatorname{Debt}(x) \wedge \operatorname{Smart}(x))$

Action (Job(x),
Precondition: ,
Effect: $\operatorname{Money}(x) \wedge \neg \operatorname{Smart}(x))$

Action(Pay (x),
Precondition: Money (x),
Effect: $\neg \operatorname{Money}(x) \wedge \neg \operatorname{Debt}(x))$

Graph Plan

The graph plan allows multiple actions to be done in a single turn, which is why S_{1} has both
${ }_{\rceil}$Sleepy (me) and ${ }_{\eta}$ Hungry (me)
You keep building the graph until either: (1) You find your goal (more on this later) (2) The graph converges (i.e. states, actions and mutexes stop changing)

Mutexes

A mutex are two things that cannot be together (i.e. cannot happen or be true simultaneously)

You can put mutexes:

1. Between two relationships/literals
2. Between actions

There are different rules for doing mutexes between actions vs. relations

Mutexes: actions

For all of these cases I will assume actions two actions: A1 and A2

These actions have preconditions and effects: Pre(A1) and Effect(A1), respectively

For example, I will abbreviate below as: Action(Eat(x),
$A 1=E a t$ Precondition: $\operatorname{Hungry}(x), \longrightarrow \neg H \in E f f e c t(A 1)$ Effect: $\neg H u n g r y(x))$ $H \in \operatorname{Pre}(A 1)$

Mutexes: actions

Mutex Action rules:

1. $x \in E f f e c t(A 1) \wedge \neg x \in E f f e c t(A 2)$
2. $x \in \operatorname{Pre}(A 1) \wedge \neg x \in E f f e c t(A 2)$
3. $x \in \operatorname{Pre}(A 1) \wedge \neg x \in \operatorname{Pre}(A 2)$

Mutexes: actions

Mutex Action rules:

Mutexes: actions

Mutex Action rules:

1. $x \in E f f e c t(A 1) \wedge \neg x \in E f f e c t(A 2)$
2. $x \in \operatorname{Pre}(A 1) \wedge \neg x \in E f f e c t(A 2)$
3. $x \in \operatorname{Pre}(A 1) \wedge \neg x \in \operatorname{Pre}(A 2)$

Mutexes: actions

Mutex Action rules:

Mutexes: actions

Mutex Action rules:

1. $x \in E f f e c t(A 1) \wedge \neg x \in E f f e c t(A 2)$
2. $x \in \operatorname{Pre}(A 1) \wedge \neg x \in E f f e c t(A 2)$
3. $x \in \operatorname{Pre}(A 1) \wedge \neg x \in \operatorname{Pre}(A 2)$

Mutexes: actions

Mutex Action rules:

Mutexes: actions

Mutex Action rules:

1. $x \in E f f e c t(A 1) \wedge \neg x \in E f f e c t(A 2)$
2. $x \in \operatorname{Pre}(A 1) \wedge \neg x \in E f f e c t(A 2)$
3. $x \in \operatorname{Pre}(A 1) \wedge \neg x \in \operatorname{Pre}(A 2)$

Mutexes: states

There are 2 (easier) rules for states, but unlike action mutexes they can change across levels

1. Opposite relations are mutexes (x and f^{x}) 2. If there are mutexes between all possible actions that lead to a pair of states

Can rephrase second rule: All pairs of states start with a mutex, but remove mutex if there are un-mutexes actions that lead to state pair

Mutexes: states

1. Opposite relations are mutexes (x and $\urcorner \mathrm{x}$) 2. If there are mutexes between all possible actions that lead to a pair of states

Mutexes: states

1. Opposite relations are mutexes (x and $\urcorner \mathrm{x}$) 2. If there are mutexes between all possible actions that lead to a pair of states

Mutexes: states

1. Opposite relations are mutexes (x and $\urcorner \mathrm{x}$) 2. If there are mutexes between all possible actions that lead to a pair of states

Mutexes: states

1. Opposite relations are mutexes (x and $\downarrow x$) 2. If there are mutexes between all possible actions that lead to a pair of states

This mutex will be gone on the next level (as you can
Sl has mutex with both E and $\operatorname{NoOp(} 7 \mathrm{H})$ $7^{\text {eat again) }}$

Mutexes: states

1. Opposite relations are mutexes (x and $\urcorner \mathrm{x}$) 2. If there are mutexes between all possible actions that lead to a pair of states

Mutexes: actions

You do it!

Initial: $\neg \operatorname{Money}(m e) \wedge \neg \operatorname{Smart}(m e) \wedge \neg \operatorname{Debt}(m e)$ Goal: $\operatorname{Money}(m e) \wedge \operatorname{Smart}(m e) \wedge \neg \operatorname{Debt}(m e)$
Action (School (x),

Precondition: ,
Effect: $\operatorname{Debt}(x) \wedge \operatorname{Smart}(x))$

Action (Job(x),
Precondition: ,
Effect: $\operatorname{Money}(x) \wedge \neg \operatorname{Smart}(x))$

Precondition: Money (x),
Effect: $\neg \operatorname{Money}(x) \wedge \neg \operatorname{Debt}(x))$

Mutexes: actions Cls,
 $\neg \mathrm{M} \longrightarrow \neg \mathrm{M} \longrightarrow \mathrm{M}$

GraphPlan

GraphPlan can be computed in $\mathrm{O}\left(\mathrm{n}(\mathrm{a}+\mathrm{l})^{2}\right)$, where $n=$ levels before convergence $\mathrm{a}=$ number of actions l = number of relations/literals/states (square is due to needing to check all pairs)

The original planning problem is PSPACE, which is known to be harder than NP

GraphPlan: states

Let's consider this problem:

Initial: Clean \wedge Garbage \wedge Quiet Goal: Food $\wedge \neg$ Garbage \wedge Present

Action: (MakeFood,
 Action: (Takeout,

Precondition: Clean, Effects: Food)

Action: (Wrap,

 Precondition: Quiet, Effects: Present)Precondition: Garbage,
Effects: \neg Garbage $\wedge \neg$ Clean $)$

Action: (Dolly,

Precondition: Garbage,
Effects: \neg Garbage $\wedge \neg$ Quiet)

GraphPlan: states

Mutexes

Possible state pairs:
F, C C, Q

$$
\stackrel{\Gamma}{\Gamma,\rceil C} \quad C,\rceil Q
$$

F, G
C, P
F, 7 G
TC, G
F, Q
${ }_{7} \mathrm{C}, 7 \mathrm{G}$
F,$\rceil \mathrm{Q} \not \neg \mathrm{C}, \mathrm{Q}$
F, P
$\rightarrow \mathrm{C}, \mathrm{p}$
C, C
${ }_{7} \mathrm{C}, \mathrm{P}$
C, G
$C,{ }_{7} G$

GraphPlan as heuristic

GraphPlan is optimistic, so if any pair of goal states are in mutex, the goal is impossible

3 basic ways to use GraphPlan as heuristic: (1) Maximum level of all goals
(2) Sum of level of all goals (not admissible)
(3) Level where no pair of goals is in mutex
(1) and (2) do not require any mutexes, but are less accurate (quick 'n' dirty)

GraphPlan as heuristic

For heuristics (1) and (2), we relax as such: 1. Multiple actions per step, so can only take fewer steps to reach same result
2. Never remove any states, so the number of possible states only increases

This is a valid simplification of the problem, but it is often too simplistic directly

GraphPlan as heuristic

Heuristic (1) directly uses this relaxation and finds the first time when all 3 goals appear at a state level
(2) tries to sum the levels of each individual first appearance, which is not admissible (but works well if they are independent parts)

Our problem: goal=\{Food, \rceil Garbage, Present $\}$ First appearance: $\mathrm{F}=1,\rceil \mathrm{G}=1, \mathrm{P}=1$

GraphPlan: states

Heuristic (1):
$\operatorname{Max}(1,1,1)=1$
Heuristic (2): $1+1+1=3$

GraphPlan as heuristic

Often the problem is too trivial with just those two simplifications

So we add in mutexes to keep track of invalid pairs of states/actions

This is still a simplification, as only impossible state/action pairs in the original problem are in mutex in the relaxation

GraphPlan as heuristic

Heuristic (3) looks to find the first time none of the goal pairs are in mutex

For our problem, the goal states are: (Food, \rceil Garbage, Present)

So all pairs that need to have no mutex: (F, $\rceil \mathrm{G}$), (F, P), ($\rceil \mathrm{G}, \mathrm{P}$)

None of the pairs are in mutex at level 1

This is our heuristic estimate

Finding a solution

GraphPlan can also be used to find a solution:
(1) Converting to a CSP
(2) Backwards search

Both of these ways can be run once GraphPlan has all goal pairs not in mutex (or converges)

Additionally, you might need to extend it out a few more levels further to find a solution (as GraphPlan underestimates)

GraphPlan as CSP

Variables $=$ states, Domains $=$ actions out of Constraints = mutexes \& preconditions

(a) Planning Graph

$$
\begin{aligned}
& \text { Variables: } G_{1}, \cdots, G_{4}, P_{1} \cdots P_{6} \\
& \text { Domains: } G_{1}:\left\{A_{1}\right\}, G_{2}:\left\{A_{2}\right\} G_{3}:\left\{A_{3}\right\} G_{4}:\left\{A_{4}\right\} \\
& P_{1}:\left\{A_{5}\right\} P_{2}:\left\{A_{6}, A_{11}\right\} P_{3}:\left\{A_{7}\right\} P_{4}:\left\{A_{8}, A_{9}\right\} \\
& P_{5}:\left\{A_{10}\right\} P_{6}:\left\{A_{10}\right\}
\end{aligned} \quad \begin{array}{r}
\text { Constraints (normal): } P_{1}=A_{5} \Rightarrow P_{4} \neq A_{9} \\
P_{2}=A_{6} \Rightarrow P_{4} \neq A_{8} \\
P_{2}=A_{11} \Rightarrow P_{3} \neq A_{7} \\
\text { Constraints (Activity): } G_{1}=A_{1} \Rightarrow \text { Active }\left\{P_{1}, P_{2}, P_{3}\right\} \\
G_{2}=A_{2} \Rightarrow \text { Active }\left\{P_{4}\right\} \\
G_{3}=A_{3} \Rightarrow \text { Active }\left\{P_{5}\right\} \\
G_{4}=A_{4} \Rightarrow \text { Active }\left\{P_{1}, P_{6}\right\}
\end{array}
$$

Init State: Active $\left\{G_{1}, G_{2}, G_{3}, G_{4}\right\}$

Finding a solution

For backward search, attempt to find arrows back to the initial state(without conflict/mutex)

This backwards search is similar to backward chaining in first-order logic (depth first search)

If this fails to find a solution, mark this level and all the goals not satisfied as: (level, goals)
(level, goals) stops changing, no solution

Graph Plan

Remember this from last time...

Initial: $\neg \operatorname{Money}(m e) \wedge \neg \operatorname{Smart}(m e) \wedge \neg \operatorname{Debt}(m e)$
Goal: $\operatorname{Money}(m e) \wedge \operatorname{Smart}(m e) \wedge \neg \operatorname{Debt}(m e)$
Action (School (x),

Precondition: ,
Effect: $\operatorname{Debt}(x) \wedge \operatorname{Smart}(x))$

Action (Job(x),
Precondition: ,
Effect: $\operatorname{Money}(x) \wedge \neg \operatorname{Smart}(x))$

Precondition: Money (x),
Effect: $\neg \operatorname{Money}(x) \wedge \neg \operatorname{Debt}(x))$

Ask:
${ }_{7} \mathrm{D}^{\wedge} \mathrm{S}_{7} \mathrm{M}$ Graph Plan

Ask:

${ }_{7} \mathrm{D}^{\wedge} \mathrm{S}^{\wedge}{ }_{7} \mathrm{M}$ Graph Plan

 ... then back search 3.Error! actions $i_{7} S$ mutex
${ }_{7} \mathrm{M}$

Ask:

Ask:

Finding a solution

Formally, the algorithm is:
graph $=$ initial
noGoods = empty table (hash)
for level $=0$ to infinity
if all goal pairs not in mutex solution = DFS with noGoods if success, return paths
if graph \& noGoods converged, return fail graaph = expand graph

Mutexes

