
Planning (Ch. 10)

Announcements

Writing assignment 5 posted
-Similar to WA 3 if on project

Grade catch-up this week

Graphplan review

Graphplan relaxes planning problems by:
1. Taking multiple actions at a time
2. Not removing any relationships

To make the problem more realistic,
we do keep track of which pairs of relations
are impossible together

(However, we do not look at triplets or any
higher order subsets)

Mutexes: actions

1.
2.
3.

Mutex State rules (between pairs):
1. If opposite relations
2. If all actions that lead to this pair are in

mutex (above). (For 2 “no change” actions
if previously had mutexes)

Mutex Action rules:

Mutexes: actions

Mutexes: actions
 D D

┐D ┐D ┐D

 S S

┐S ┐S ┐S

 M M

┐M ┐M ┐M

Sc

J

Sc

P

J

Mutexes: actions
 D D

┐D ┐D ┐D

 S S

┐S ┐S ┐S

 M M

┐M ┐M ┐M

Sc

J

Sc

P

J

Non-trivial
action
mutexes:
(SC, P),
(J, P),
(SC, J),
(P,D&M),
(SC,┐D&┐S),
(J,┐M&S)

GraphPlan: states

Let's consider this problem:

GraphPlan: states

C

G

Q

M

W

D

T

F

C
┐C

G
┐G

Q
┐Q
P

Mutexes

C

G

Q

M

W

D

T

F

C
┐C

G
┐G

Q
┐Q
P

Possible state pairs:
F, C C, Q
F,┐C C, ┐Q
F, G C, P
F, ┐G ┐C, G
F, Q ┐C, ┐G
F, ┐Q ┐C, Q
F, P ┐C, ┐Q
C, ┐C ┐C, P
C, G ... (more)
C, ┐G

Mutexes

C

G

Q

M

W

D

T

F

C
┐C

G
┐G

Q
┐Q
P

Make
one
more
level
here!

M

W

D

T

F

C
┐C

G
┐G

Q
┐Q
P

Mutexes

C

G

Q

M

W

D

T

F

C
┐C

G
┐G

Q
┐Q
P

Blue mutexes
dissappear

Pink = new mutex

GraphPlan as heuristic

GraphPlan is optimistic, so if any pair of goal
states are in mutex, the goal is impossible

3 basic ways to use GraphPlan as heuristic:
(1) Maximum level of all goals
(2) Sum of level of all goals (not admissible)
(3) Level where no pair of goals is in mutex

(1) and (2) do not require any mutexes, but are
less accurate (quick 'n' dirty)

GraphPlan as heuristic

For heuristics (1) and (2), we relax as such:
1. Multiple actions per step, so can only take

fewer steps to reach same result
2. Never remove any states, so the number

of possible states only increases

This is a valid simplification of the problem,
but it is often too simplistic directly

GraphPlan as heuristic

Heuristic (1) directly uses this relaxation and
finds the first time when all 3 goals appear
at a state level

(2) tries to sum the levels of each individual
first appearance, which is not admissible
(but works well if they are independent parts)

Our problem: goal={Food, ┐Garbage, Present}
First appearance: F=1, ┐G=1, P=1

GraphPlan: states

C

G

Q

M

W

D

T

F

C
┐C

G
┐G

Q
┐Q
P

Level 0: Level 1:

Heuristic (1):
Max(1,1,1) = 1

Heuristic (2):
1+1+1=3

GraphPlan as heuristic

Often the problem is too trivial with just
those two simplifications

So we add in mutexes to keep track of invalid
pairs of states/actions

This is still a simplification, as only impossible
state/action pairs in the original problem are
in mutex in the relaxation

GraphPlan as heuristic

Heuristic (3) looks to find the first time none
of the goal pairs are in mutex

For our problem, the goal states are:
(Food, ┐Garbage, Present)

So all pairs that need to have no mutex:
(F, ┐G), (F, P), (┐G, P)

Mutexes

C

G

Q

M

W

D

T

F

C
┐C

G
┐G

Q
┐Q
P

None of the
pairs are in
mutex at
level 1

This is our
heuristic
estimate

Finding a solution

GraphPlan can also be used to find a solution:
(1) Converting to a CSP
(2) Backwards search

Both of these ways can be run once GraphPlan
has all goal pairs not in mutex (or converges)

Additionally, you might need to extend
it out a few more levels further to find a
solution (as GraphPlan underestimates)

GraphPlan as CSP

Variables = states, Domains = actions out of
Constraints = mutexes & preconditions

from Do & Kambhampati

Finding a solution

For backward search, attempt to find arrows
back to the initial state(without conflict/mutex)

This backwards search is similar to backward
chaining in first-order logic (depth first search)

If this fails to find a solution, mark this level
and all the goals not satisfied as: (level, goals)

(level, goals) stops changing, no solution

Graph Plan

Remember this...

Graph Plan
 D D D

┐D ┐D ┐D ┐D

 S S S

┐S ┐S ┐S ┐S

 M M M

┐M ┐M ┐M ┐M

Sc

J

Sc

P

J

Sc

P

J

Ask:
┐D^S^┐M
Find first
no mutex...

Graph Plan
 D D D

┐D ┐D ┐D ┐D

 S S S

┐S ┐S ┐S ┐S

 M M M

┐M ┐M ┐M ┐M

Sc

J

Sc

P

J

Sc

P

J

Ask:
┐D^S^┐M
... then back
search

Error!
actions
in
mutex

1.2.3.

4.5.

6.

Graph Plan
 D D D

┐D ┐D ┐D ┐D

 S S S

┐S ┐S ┐S ┐S

 M M M

┐M ┐M ┐M ┐M

Sc

J

Sc

P

J

Sc

P

J

Ask:
┐D^S^┐M
try different
back path... 1.

2.

Error states
in mutex

4.

3.
3.

Graph Plan
 D D D

┐D ┐D ┐D ┐D

 S S S

┐S ┐S ┐S ┐S

 M M M

┐M ┐M ┐M ┐M

Sc

J

Sc

P

J

Sc

P

J

Ask:
┐D^S^┐M
found
solution!

M

W

D

T

F

C
┐C

G
┐G

Q
┐Q
P

Finding a solution

C

G

Q

M

W

D

T

F

C
┐C

G
┐G

Q
┐Q
P

You try it!

Goal: F, ┐G, P

Finding a solution

Formally, the algorithm is:

graph = initial
noGoods = empty table (hash)
for level = 0 to infinity

if all goal pairs not in mutex
solution = DFS with noGoods
if success, return paths

if graph & noGoods converged, return fail
graaph = expand graph

GraphPlan

GraphPlan can be computed in O(n(a+l)2),
where n = levels before convergence
a = number of actions
l = number of relations/literals/states
(square is due to needing to check all pairs)

The original planning problem is PSPACE,
which is known to be harder than NP

