Uninformed Search (Ch. 3-3.4)
Announcements

Homework assigned

Due Sunday night (11:55pm)
Search algorithm

Generic search algorithm:

function tree-search(root-node)
 fringe ← successors(root-node)
 explored ← empty
 while (notempty(fringe))
 {node ← remove-first(fringe)
 state ← state(node)
 if goal-test(state) return solution(node)
 explored ← insert(node,explored)
 fringe ← insert-all(successors(node),fringe, if node not in explored)
 }
 return failure
end tree-search
Depth first search

DFS is same as BFS except with a FILO (or LIFO) instead of a FIFO queue
Depth first search

Metrics:
1. Might not terminate (not correct) (e.g. in vacuum world, if first expand is action L)
2. Non-optimal (just... no)
3. Time complexity = $O(b^d)$
4. Space complexity = $O(b \times d)$

Only way this is better than BFS is the space complexity...
Depth limited search

DFS by itself is not great, but it has two (very) useful modifications

Depth limited search runs normal DFS, but if it is at a specified depth limit, you cannot have children (i.e. take another action)

Typically with a little more knowledge, you can create a reasonable limit and makes the algorithm correct
Depth limited search

However, if you pick the depth limit before d, you will not find a solution (not correct, but will terminate)
Iterative deepening DFS

Probably the most useful uninformed search is **iterative deepening DFS**

This search performs depth limited search with maximum depth 1, then maximum depth 2, then 3... until it finds a solution.
Iterative deepening DFS
Iterative deepening DFS

The first few states do get re-checked multiple times in IDS, however it is not too many.

When you find the solution at depth d, depth 1 is expanded d times (at most b of them).

The second depth are expanded $d-1$ times (at most b^2 of them).

Thus, $d \cdot b + (d - 1) \cdot b^2 + \ldots + 1 \cdot b^d = O(b^d)$.
Iterative deepening DFS

Metrics:
1. Complete
2. Non-optimal (unless uniform cost)
3. $O(b^d)$
4. $O(bd)$

Thus IDS is better in every way than BFS (asymptotically)

Best uninformed we will talk about
Bidirectional search

Bidirectional search starts from both the goal and start (using BFS) until the trees meet.

This is better as $2 \times (b^{d/2}) < b^d$ (the space is much worse than IDS, so only applicable to small problems)
Summary of algorithms

Fig. 3.21, p. 91

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Uniform-Cost</th>
<th>Depth-First</th>
<th>Depth-Limited</th>
<th>Iterative Deepening DLS</th>
<th>Bidirectional (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete?</td>
<td>Yes[a]</td>
<td>Yes[a,b]</td>
<td>No</td>
<td>No</td>
<td>Yes[a]</td>
<td>Yes[a,d]</td>
</tr>
<tr>
<td>Time</td>
<td>$O(b^d)$</td>
<td>$O(b^{1+C^*/\varepsilon})$</td>
<td>$O(b^m)$</td>
<td>$O(b^l)$</td>
<td>$O(b^d)$</td>
<td>$O(b^{d/2})$</td>
</tr>
<tr>
<td>Space</td>
<td>$O(b^d)$</td>
<td>$O(b^{1+C^*/\varepsilon})$</td>
<td>$O(bm)$</td>
<td>$O(bl)$</td>
<td>$O(bd)$</td>
<td>$O(b^{d/2})$</td>
</tr>
<tr>
<td>Optimal?</td>
<td>Yes[c]</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes[c]</td>
<td>Yes[c,d]</td>
</tr>
</tbody>
</table>

$l = \text{depth limit}$

There are a number of footnotes, caveats, and assumptions. See Fig. 3.21, p. 91.

[a] complete if b is finite
[b] complete if step costs $\geq \varepsilon > 0$
[c] optimal if step costs are all identical
 (also if path cost non-decreasing function of depth only)
[d] if both directions use breadth-first search
 (also if both directions use uniform-cost search with step costs $\geq \varepsilon > 0$)

Generally the preferred uninformed search strategy
Informed Search (Ch. 3.5-3.6)
In uninformed search, we only had the node information (parent, children, cost of actions).

Now we will assume there is some additional information, we will call a heuristic that estimates the distance to the goal.

Previously, we had no idea how close we were to goal, simply how far we had gone already.
Greedy best-first search

To introduce heuristics, let us look at the tree version of greedy best-first search.

This search will simply repeatedly select the child with the lowest heuristic (cost to goal est.).
Greedy best-first search

This finds the path: Arad -> Sibiu -> Fagaras -> Bucharest

However, this greedy approach is not optimal, as that is the path: Arad -> Sibiu -> Rimmicu Vilcea -> Pitesti -> Bucharest

In fact, it is not guaranteed to converge (if a path reaches a dead-end, it will loop infinitely)
A*

We can combine the distance traveled and the estimate to the goal, which is called A* (a star)

The method goes: *(red is for “graphs”)*

initialize explored={}, fringe={[start,f(start)]}

1. Choose C = argmin(f-cost) in fringe
2. Add or update C's children to fringe, with associated f-value, remove C from fringe
3. Add C to explored
4. Repeat 1. until C == goal or fringe empty
A*

\[f(\text{node}) = g(\text{node}) + h(\text{node}) \]

We will talk more about what heuristics are good or should be used later.

Priority queues can be used to efficiently store and insert states and their f-values into the fringe.
A*
A*

Step: Fringe (argmin)
0: [Arad, 366]
1: [Zerind, 75+374], [Sibu, 140+253], [Timisoara, 118+329]
1: [Zerind, 449], [Sibu, 393], [Timisoara, 447]
2: [Fagaras, 140+99+176], [Rimmicu Vilcea, 140+80+193], [Zerind, 449], [Timisoara, 447]
2: [Fagaras, 415], [Rimmicu Vilcea, 413], [Zerind, 449], [Timisoara, 447]
3: [Craiova, 140+80+146+160], [Pitesti, 140+80+97+100], [Fagaras, 415], [Zerind, 449], [Timisoara, 447]
3: [Craiova, 526], [Pitesti, 417], [Fagaras, 415], [Zerind, 449], [Timisoara, 447]
4: ... on next slide
A*

4: [Bucharest, 140+99+211+0], [Craiova, 526], [Pitesti, 417], [Zerind, 449], [Timisoara, 447]
4: [Bucharest, 450], [Craiova, 526], [Pitesti, 417], [Zerind, 449], [Timisoara, 447]
5: [Craiova from Pitesti, 140+80+97+138+160], [Bucharest from Pitesti, 140+80+97+101+0], [Bucharest from Fagaras, 450], [Timisoara, 447], [Craiova from Rimmicu Vilcea, 526], [Zerind, 449]
5: [Craiova from Pitesti, 615], [Bucharest from Pitesti, 418], [Bucharest from Fagaras, 450], [Timisoara, 447], [Craiova from Rimmicu Vilcea, 526], [Zerind, 449]
A*

You can choose multiple heuristics (more later) but good ones skew the search to the goal

You can think circles based on f-cost:
- if $h($node$) = 0$, f-cost are circles
- if $h($node$) = \text{very good}$, f-cost long and thin ellipse

This can also be though of as topographical maps (in a sense)
A*

h(node) = 0
(bad heuristic, no goal guidance)

h(node) = straight line distance
A*

Good heuristics can remove “bad” sections of the search space that will not be on any optimal solution (called pruning)

A* is optimal and in fact, no optimal algorithm could expand less nodes (optimally efficient)

However, the time and memory cost is still exponential (memory tighter constraint)
You do it!

Arrows show children (easier for you)

(see: https://www.youtube.com/watch?v=sAoBeujec74)
Iterative deepening A*

You can combine iterative deepening with A*

Idea:
1. Run DFS in IDS, but instead of using depth as cutoff, use f-cost
2. If search fails to find goal, increase f-cost to next smallest seen value

Pros: Efficient on memory
Cons: Large (LARGE) amount of re-searching
SMA*

One fairly straight-forward modification to A* is simplified memory-bounded A* (SMA*)

Idea:
1. Run A* normally until out of memory
2. Let C = argmax(f-cost) in fringe
3. Collapse C's parent into the min cost of all its children (remove these children from fringe, adding parent instead)
Here assume you can only hold at most 3 nodes in memory.
SMA*

SMA* is nice as it (like A*) find the optimal solution while keeping re-searching low (given your memory size)

IDA* only keeps a single number in memory, and thus re-searches many times (inefficient use of memory)

Typically there is some time to memory trade-off
Heuristics

However, for A* to be optimal the heuristic $h(node)$ needs to be...

For trees: **admissible** which means:

$$h(node) \leq \text{optimal path from } h \text{ to goal}$$

(i.e. $h(node)$ is an underestimate of cost)

For graphs: **consistent** which means:

$$h(node) \leq \text{cost(node to child) + } h(child)$$

(i.e. triangle inequality holds true)

(i.e. along any path, f-cost increases)
Heuristics

In our example, the $h(\text{node})$ was the straight line distance from node to goal.

This is an underestimate as physical roads cannot be shorter than this (it also satisfies the triangle inequality).

Thus this heuristic is admissible (and consistent).
Heuristics

The straight line cost works for distances in the physical world, do any others exist?

One way to make heuristics is to relax the problem (i.e. simplify in a useful way)

The optimal path cost in the relaxed problem can be a heuristic for the original problem (i.e. if we were not constrained to driving on roads, we could take the straight line path)
Heuristics

Let us look at 8-puzzle heuristics:

The rules of the game are:
- You can swap any square with the blank
- Relaxed rules:
 1. Teleport any square to any destination
 2. Move any square 1 space (overlapping ok)
Heuristics

1. Teleport any square to any destination
 Optimal path cost is the number of mismatched squares (blank included)

2. Move any square 1 space (overlapping ok)
 Optimal path cost is Manhattan distance for each square to goal summed up

Which ones is better? (Note: these optimal solutions in relaxed need to be computed fast)
Heuristics

\[
\begin{align*}
 h_1 &= \text{mismatch count} \\
 h_2 &= \text{number to goal difference sum}
\end{align*}
\]

<table>
<thead>
<tr>
<th>d</th>
<th>IDS</th>
<th>A*(h₁)</th>
<th>A*(h₂)</th>
<th>IDS</th>
<th>A*(h₁)</th>
<th>A*(h₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>2.45</td>
<td>1.79</td>
<td>1.79</td>
</tr>
<tr>
<td>4</td>
<td>112</td>
<td>13</td>
<td>12</td>
<td>2.87</td>
<td>1.48</td>
<td>1.45</td>
</tr>
<tr>
<td>6</td>
<td>680</td>
<td>20</td>
<td>18</td>
<td>2.73</td>
<td>1.34</td>
<td>1.30</td>
</tr>
<tr>
<td>8</td>
<td>6384</td>
<td>39</td>
<td>25</td>
<td>2.80</td>
<td>1.33</td>
<td>1.24</td>
</tr>
<tr>
<td>10</td>
<td>47127</td>
<td>93</td>
<td>39</td>
<td>2.79</td>
<td>1.38</td>
<td>1.22</td>
</tr>
<tr>
<td>12</td>
<td>364404</td>
<td>227</td>
<td>73</td>
<td>2.78</td>
<td>1.42</td>
<td>1.24</td>
</tr>
<tr>
<td>14</td>
<td>3473941</td>
<td>539</td>
<td>113</td>
<td>2.83</td>
<td>1.44</td>
<td>1.23</td>
</tr>
<tr>
<td>16</td>
<td>–</td>
<td>1301</td>
<td>211</td>
<td>–</td>
<td>1.45</td>
<td>1.25</td>
</tr>
<tr>
<td>18</td>
<td>–</td>
<td>3056</td>
<td>363</td>
<td>–</td>
<td>1.46</td>
<td>1.26</td>
</tr>
<tr>
<td>20</td>
<td>–</td>
<td>7276</td>
<td>676</td>
<td>–</td>
<td>1.47</td>
<td>1.27</td>
</tr>
<tr>
<td>22</td>
<td>–</td>
<td>18094</td>
<td>1219</td>
<td>–</td>
<td>1.48</td>
<td>1.28</td>
</tr>
<tr>
<td>24</td>
<td>–</td>
<td>39135</td>
<td>1641</td>
<td>–</td>
<td>1.48</td>
<td>1.26</td>
</tr>
</tbody>
</table>
Heuristics

The real branching factor in the 8-puzzle:
2 if in a corner
3 if on a side
4 if in the center
(Thus larger “8-puzzles” tend to 4)

Effective branching factor is assuming the tree is exponential:
Let N be number of nodes in memory, then effective branching factor $\approx N^{1/(d+1)}$
Heuristics

h2 has a better branching factor than h1, and this is not a coincidence...

$h_2(\text{node}) \geq h_1(\text{node})$ for all nodes, thus we say h_2 dominates h_1 (and will thus perform better)

If there are multiple non-dominating heuristics: $h_1, h_2...$ Then $h^* = \max(h_1, h_2, ...)$ will dominate $h_1, h_2, ...$ and will also be admissible /consistent if $h_1, h_2 ...$ are as well
Heuristics

If larger is better, why do we not just set $h(\text{node}) = 9001$?
If larger is better, why do we not just set $h(\text{node}) = 9001$?

This would (probably) not be admissible...

If $h(\text{node}) = 0$, then you are doing the uninformed uniform cost search.

If $h(\text{node}) = \text{optimal}_\text{cost}(\text{node to goal})$ then will ONLY explore nodes on an optimal path.
Heuristics

You cannot add two heuristics \((h^* = h_1 + h_2)\), unless there is no overlap (i.e. \(h_1\) cost is independent of \(h_2\) cost)

For example, in the 8-puzzles:
- \(h_3\): number of 1, 2, 3, 4 that are misplaced
- \(h_4\): number of 5, 6, 7, 8 that are misplaced

There is no overlap, and in fact:
\[h_3 + h_4 = h_1 \] (as defined earlier)
Heuristics

Cannibals & missionaries problem (also jealous husband problem):

Rules:
1. One either bank, cannot have m < c
2. 2 ppl in boat
3. 3m & 3c

Goal: fewest steps to swap
Heuristics

What relaxation did you use? (sample)

Make a heuristic for this problem

Is the heuristic admissible/consistent?
Heuristics

What relaxation did you use? (sample)

Remove rule 1 \((m > c \text{ on both banks})\)

Make a heuristic for this problem

\[h_1 = \frac{\text{[num people wrong bank]}}{2} \text{ (boat cap.)} \]

Is the heuristic admissible/consistent?

YES! ('cause I say so)