
Constraint sat. prob. (Ch. 6)



Announcements

Midterm graded



CSP backtracking

However, this is still hope for searching (called
backtracking search (it backups up at conflict))

We will improve it by...
1. The order we pick variables
2. The order we pick values for variables
3. Mix search with inference
4. Smarter backtracking



1. What variable?

When picking the variables, we want to the
variable with the smallest domain (the most
restricted variable)

The best-case is that there is only one value
in the domain to remain consistent

By picking the most constrained variables, we
fail faster and are able to prune more of the tree



1. What variable?

Suppose we pick {WA = red}, it
would be silly to try and color V next

Instead we should try to color NT or SA, as
these only have 2 possible colorings, while the
rest have 3

This will immediately let the computer know
that it cannot color NT or SA red (prune
these branches right way)

NT
SA



1. What variable?

But we can do even better!  

If there is a tie for possible values to take, we 
pick the variable with the most connections

This ensures that other nodes are more
restricted to again prune earlier

For example, we should color SA first as it
connects to 5 other provinces 



2. What value?

After we picked a variable to look at,
we must assign a value

Here we want to do the opposite: choose the
value which constrains the neighbors the least

This is “putting your best foot forward” or 
trying your best to find a goal (while failing
fast helps pruning, we do actually want to find
a goal not prune as much as possible)



2. What value?

For example, if we color {WA = red},
then pick Q next

Our options for Q are {red, green or blue}, but
picking {green or blue} limit NT & SA to
only one valid color and NSW to 2

If we pick {Q=red}, then NT, SA & NSW all
have 2 valid possibilities (and this happens to 
be on a solution path)

NA

SA NSW



1. & 2.

An analogy to 1&2 is: “trying our best (2) to
solve the weakest link (1)”

By tackling the weakest link first, it will be 
easier for less constrained nodes to adapt/
pick up the slack

However, we do want to try and solve the
problem, not find the quickest way to fail
(i.e. always picking blue... ... >.<)



3. Mix search & inference?

We described how AC-3 can use inference to 
reduce the domain size

Inference does not need to run in isolation;
it works better to assign a value then apply 
inference to prune before even searching

This works well in combination with 1 as uses
the domain size to choose the variable and 3
shrinks domain sizes to be consistent



3. Mix search & inference?

This is somewhat similar to providing
a heuristic for our original search

Inference lets us know an estimation of what
colors are left and can be done efficiently

We can use this estimate to guide our search
more directly towards the goal



3. Mix search & inference?

In the previous example: {WA = red},
then color Q

We want to choose {Q = red} to allow the most
choices for NT and SA

Without inference we could not see this

Instead we would only think all three colors
are possible for any uncolored part



4. Smart backtracking

Instead of moving our search back up a single
layer of the tree and picking from there...

We could backup to the first node above the
conflict that was actually involved in the
conflict

This avoids in-between nodes which did not
participate in the conflict



4. Smart backtracking

Suppose we assigned (in this order):
{WA = B, SA = G, Q = R, T = R} 
then pick NT

NT has all three colors neighboring it, so a
conflict is reached

In normally, we would backtrack and try to
change T (i.e. 4), but this was actually not
involved in the conflict (1, 2 & 3 were) 

1

2

3

4



Example

Suppose we have the following statement:
T W O

+ T W O
= F O U R

We want to assign each character a single
digit to make this a valid math equation
(each different letter is a different digit)

How do you represent this as a CSP?



Example

Suppose we have the following statement:
T W O

+ T W O
= F O U R

R = O + O mod 10
U = W + W + floor((O+O)/10) mod 10
O = T + T + floor((W+W/10)) mod 10
F = floor((T+T)/10) mod 10
T ≠ W ≠ O ≠ F ≠ U ≠ R



Example

R = O + O mod 10
U = W + W + floor((O+O)/10) mod 10
O = T + T + floor((W+W/10)) mod 10
F = floor((T+T)/10) mod 10
T ≠ W ≠ O ≠ F ≠ U ≠ R

Pictorally:
(relationships) 

O
T R

F U
W



Example

R = O + O (mod 10 on all)
U = W + W + floor((O+O)/10)
O = T + T + floor((W+W/10))
F = floor((T+T)/10)
T ≠ W ≠ O ≠ F ≠ U ≠ R

Domains are (as they are digits):
O = R = U = W = {0,1,2,3,4,5,6,7,8,9}
F=T={1,2,3,4,5,6,7,8,9}
(not 0 as leading digit)

O
T R

F U
W



Example

R = O + O (mod 10 on all)
U = W + W + floor((O+O)/10)
O = T + T + floor((W+W/10))
F = floor((T+T)/10)
T ≠ W ≠ O ≠ F ≠ U ≠ R
We can simplify the floor by adding auxiliary
variables: C

10
, C

100
 and C

1000
 representing

the “carry over” value from the addition
Specifically, floor((O+O/10) = C

10

O
T R

F U
W



Example

R = O + O mod 10
U = W + W + C

10 
mod 10

O = T + T + C
100 

mod 10
F = C

1000 
mod 10

T ≠ W ≠ O ≠ F ≠ U ≠ R
C

10 
= floor((O+O)/10) mod 10 

C
100 

= floor((W+W)/10) mod 10
C

1000
 = floor((T+T)/10) mod 10

C
10C

100
C

1000

O
T R

F U
W



Example

Domains:
O = R = U = W = 
{0,1,2,3,4,5,6,7,8,9}

F=T={1,2,3,4,5,6,7,8,9}

C
10

 = C
100

 = C
1000

 = {0,1}
(as they are the sum of two single digits)

C
10C

100
C

1000

O
T R

F U
W



Example

We want to pick the
variable with the smallest
domain

All C
x
 tie with a domain size

of two, so we pick the one with the most
connections: Either C

10
 or C

100
 (I will pick C

10
)

So try C
10

 = 0

C
10C

100
C

1000

O
T R

F U
W



Example

If C
10

 = 0, we see if we can
shrink any of the domains
that involve C

10
...

U = W + W + C
10 

mod 10
C

10
 = floor((O+O)/10) mod 10

U and W we cannot shrink,
but we can for O: O={0,1,2,3,4}

C
10C

100
C

1000

O
T R

F U
W



Example

Then pick next:
C

100
 = 0, then infer 

W={0,1,2,3,4}
O and T no change

(You could do further inference to reduce U
by using MAC inference, but I only shrink
domains of things directly related to the pick)

C
10C

100
C

1000

O
T R

F U
W



Example

Then pick next:
C

1000
 = 0, then infer 

F = { }, a contradiction

So backup...  This contradiction
involved C

1000
 and F, so we just need to

re-pick C
1000

, C
1000

=1
Thus we can infer:
F={1}, T = {5,6,7,8,9}

C
10C

100
C

1000

O
T R

F U
W



Example

At this point our picks are:
C

10
 = 0

C
100

 = 0
C

1000
 = 1

Domains:
F = {1}
T = {5,6,7,8,9}
W = O = {0,1,2,3,4}
U = R = {0,1,2,3,4,5,6,7,8,9}

C
10C

100
C

1000

O
T R

F U
W



Example

Next smallest domain is F:
Only one pick, F=1

Since F has to be a
unique digit we can infer:

W = O = {0,2,3,4}
U = R = {0,2,3,4,5,6,7,8,9}
T unchanged = {5,6,7,8,9}

C
10C

100
C

1000

O
T R

F U
W



Example

Tie for next smallest domain
between W and O

O is connected to 4 variables
so pick over W(connected to 3)
(other than the “unique” criteria)

Try O=0 and infer: 
W = {2,3,4}, R = { } ← Invalid
U = {2,3,4,5,6,7,8,9,}, T={ } ← Invalid

C
10C

100
C

1000

O
T R

F U
W



Example

Conflict: T involving O and C
100

, 
most recent pick is O

Change to O=2, infer:

T={ } ← Invalid
W = {0,3,4}, R = { 4 }
U = {0,3,4,5,6,7,8,9,}

C
10C

100
C

1000

O
T R

F U
W



Example

Conflict: T involving O and C
100

, 
most recent pick is O

Change to O=3, infer:

T={ } ← Invalid
W = {0,2,4}, R = { 6 }
U = {0,2,4,5,6,7,8,9,}

C
10C

100
C

1000

O
T R

F U
W



Example

Conflict: T involving O and C
100

, 
most recent pick is O

Change to O=4, infer:

T={ } ← Invalid
W = {0,2,3}, R = { 8 }
U = {0,2,3,5,6,7,8,9,}

C
10C

100
C

1000

O
T R

F U
W



Example

Tried all possible values for O,
none worked so we need
to backtrack

The conflict was with T involving
O and C

100
, so we will go back and choose

C
100

 = 1

C
10C

100
C

1000

O
T R

F U
W



Example

Currently have: C
10

=0, C
100

=1

Domains:
C

1000
 = {0, 1}

F = T = {1,2,3,4,5,6,7,8,9}
U = R = {0,1,2,3,4,5,6,7,8,9}
O = {0,1,2,3,4}, W = {5,6,7,8,9}
We will again pick C

1000
=0, conflict, pick

C
1000

=1, pick F=1... just as before

C
10C

100
C

1000

O
T R

F U
W



Example

Tie for smallest domain,
O has more connections:

Pick O=0

Domains:
W = {5,6,7,8,9}, R = { } ← Invalid
U = {2,3,4,5,6,7,8,9}, T = { } ← Invalid

C
10C

100
C

1000

O
T R

F U
W



Example

Conflict: R with O

Pick O=2

Domains:
W = {5,6,7,8,9}, R = { 4 } 
U = {0,3,4,5,6,7,8,9}, T = { } ← Invalid

(as C
100

 = 1, we claim T+T+1=2 mod 10...)

C
10C

100
C

1000

O
T R

F U
W



Example

Conflict: T with O

Pick O=3

Domains:
W = {5,6,7,8,9}, R = { 6 } 
U = {0,2,4,5,6,7,8,9}, T = { 6 }

C
10C

100
C

1000

O
T R

F U
W



Example

Next smallest domain is tie,
T has more connections

Pick T=6

Domains:
W = {5,7,8,9}, R = { } ← Invalid 
U = {0,2,4,5,7,8,9}

C
10C

100
C

1000

O
T R

F U
W



Example

Conflict: R with T and O,
T has no other options,
so we go back to O

Pick O=4

Domains:
W = {5,7,8,9}, R = { 8 }  
U = {0,2,3,5,7,8,9}, T = { } ← Invalid

C
10C

100
C

1000

O
T R

F U
W



Example

Conflict: T with O and C
100

,
no other options for C

100
,

so have to go back and
pick C

10
=1

Domains:
C

100
=C

1000
={0,1}, O={5,6,7,8,9}

F = T = {1,2,3,4,5,6,7,8,9}
W = U = R = {0,1,2,3,4,5,6,7,8,9}

C
10C

100
C

1000

O
T R

F U
W



Example

Pick C
100

=0, do part with
F and C

100
 to find

C
100

=F=1

Domains:
T=O={5,6,7,8,9}
W = {0,2,3,4}
U = R = {0,2,3,4,5,6,7,8,9}

C
10C

100
C

1000

O
T R

F U
W



Example

Tie for smallest domain,
O has more connections:

Pick O=5

Domains:
T = { } ← Invalid
W = {0,2,3,4}
U = {0,2,3,4,6,7,8,9}, R = {0}

C
10C

100
C

1000

O
T R

F U
W



Example

Conflict: T with O and C
100

,
re-pick O...

Pick O=6

Domains:
T = { 8 }
W = {0,2,3,4}
U = {0,2,3,4,5,7,8,9}, R = {2}

C
10C

100
C

1000

O
T R

F U
W



Example

Tie for next smallest domain,
T has more connections

Pick T=8

Domains:
W = {0,2,3,4}
U = {0,2,3,4,5,7,9}, R = {2}

C
10C

100
C

1000

O
T R

F U
W



Example

Next smallest domain is R

Pick R=2

Domains:
W = {0,3,4}
U = {0,3,4,5,7,9}

C
10C

100
C

1000

O
T R

F U
W



Example

Next smallest domain is W

Pick W=0

Domains:
U = { } ← Invalid

C
10C

100
C

1000

O
T R

F U
W



Example

Conflict: U with W and C
10

,
most recent is W...

Pick W=3

Domains:
U = { } ← Invalid

C
10C

100
C

1000

O
T R

F U
W



Example

Conflict: U with W and C
10

,
most recent is W...

Pick W=4

Domains:
U = { } ← Invalid

C
10C

100
C

1000

O
T R

F U
W



Example

Conflict: U with W and C
10

,
most recent is W...

W has no more choices,
(nor does R or T) so pick
O = 7 

Domains:
W = {0,2,3,4}, T = {  } ← Invalid
U = {0,2,3,4,5,6,8,9}, R = {4} 

C
10C

100
C

1000

O
T R

F U
W



Example

Conflict: T with O and C
100

,
most recent is O

W has no more choices,
(nor does R or T) so pick
O = 8 

Domains:
W = {0,2,3,4}, T = { 9 } 
U = {0,2,3,4,5,6,7,9}, R = {6 } 

C
10C

100
C

1000

O
T R

F U
W



Example

Tie for domain size between,
T and R, but T has
more connections

Pick T = 9

Domains:
W = {0,2,3,4},
U = {0,2,3,4,5,6,7}, R = {6 } 

C
10C

100
C

1000

O
T R

F U
W



Example

R has smallest domain

Pick R = 6

Domains:
W = {0,2,3,4},
U = {0,2,3,4,5,7} 

C
10C

100
C

1000

O
T R

F U
W



Example

W has smallest domain

Pick W = 0

Domains:
U = { } ← Invalid 

C
10C

100
C

1000

O
T R

F U
W



Example

Conflict with W and C
10

,
W most recent...

Pick W = 2

Domains:
U = { 5 } 

C
10C

100
C

1000

O
T R

F U
W



Example

U has smallest domain 
(and only left)

Pick U = 5

Done!

C
10C

100
C

1000

O
T R

F U
W



Example

C
10

 = 1, C
100

 = 0, C
1000

 = 1
U=5, W=2, R=6, T=9, O=8, F=1

So:  T W O    928
+ T W O    ...becomes... + 928

= F O  U R     =1856



Complete-state CSP

So far we have been looking at incremental
search (adding one value at a time)

Complete-state searches are also possible in 
CSPs and can be quite effective

A popular method is to find the min-conflict,
where you pick a random variable and update
the choice to be one that creates the least
number of conflicts 



This works incredibly well for the n-queens
problem (partially due to dense solutions)

Complete-state CSP



As with most local searches (hill-climbing),
this method has issues with plateaus

This can be mitigated by avoiding recently
assigned variables (forces more exploration)

You can also apply weights to constraints and
update them based on how often they are
violated (to estimate which constraints are
more restrictive than others)

Complete-state CSP



Local search does not have “locally optimal”
solution our general search does

As we have a CSP, the “local optimal” may
occur, but if it is not 0 then we know we are
not satisfied (unless we searched the whole
space and find no goal)

This is almost as if we had an almost perfect
heuristic built in to the problem!

Complete-state CSP


