
Scheduling

Chapter 7 OSPP

Part I

(skip 7.3, 7.4)



Today

• HW #2 due Thursday

• Lab #1 teams formed



Main Points

• Scheduling policy: what to do next, when 
there are multiple threads ready to run

– Or multiple packets to send, or web requests to 
serve, or …

– We will focus on processes

– Equally applies to threads



Example

• You manage a web site, that suddenly 
becomes wildly popular.  Do you?

– Buy more hardware?

– Implement a different scheduling policy?

– Turn away some users?  Which ones?

• How much worse will performance get if the 
web site becomes even more popular?

• Provide some insight into this problem



Roadmap

• Definitions
– response time, throughput, predictability, …

• Uniprocessor policies
– FIFO, round robin, optimal

– multilevel feedback as approximation of optimal

• Multiprocessor policies
– Affinity scheduling, gang scheduling

• Queueing theory
– Can you predict/improve a system’s response time?



Definitions
• Task/Job

– User request: e.g., mouse click, web request, shell 
command, … (I/O and computation)

• Workload
– Set of tasks for system to perform

• Latency/response time
– How long does a task take to complete?

– Response can also be the first CPU slice

• Throughput
– How many tasks can be done per unit of time?



Definitions

• Overhead

– How much extra work is done by the scheduler?

• Fairness

– How equal is the performance received by different users?

• Predictability

– How consistent is the performance over time?



Definitions

• Preemptive scheduler
– If we can take resources away from a running task

• Work-conserving
– Resource is used whenever there is a task to run
– For non-preemptive schedulers, work-conserving is not always 

better (i.e. sometimes holding a resource idle is better)

• Scheduling algorithm 
– takes a workload as input
– decides which tasks to do first
– Performance metric (throughput, response) as output
– Only preemptive, work-conserving schedulers to be considered



First In First Out (FIFO)

• Schedule tasks in the order they arrive

– Continue running them until they complete or 
give up the processor

• On what workloads is FIFO particularly bad?

• Lots of small jobs, a few big ones

• Small ones get stuck behind big ones

• Jobs that never end 



Shortest Job First (SJF)

• Always do the task that has the shortest 
remaining amount of work to do
– Often called Shortest Remaining Time First (SRTF)

• Suppose we have five tasks arrive one right 
after each other, but the first one is much 
longer than the others
– Which completes first in FIFO? 

– Which completes first in SJF? 



FIFO vs. SJF



Question

• Claim: SJF is optimal for average response time
– Why? Easy to prove by contradiction.

• Does SJF have any downsides?
• Starvation (particularly for STRF: pre-emptive)
• Wide variation in response (short are short, long 

are LOOONNNGGGGG)
• Have to know run lengths



Can we do SJF in practice?

• May be hard at OS level since tasks are black 
boxes but concept can be widely applied

• Think about Web requests

– You can queue web requests

– Prioritize small ones v. large ones

– Other examples?

• FB post: text only, image

• Disk I/O: favor short ones?



Question

• Is FIFO ever optimal?

– Yes, when all requests are of equal length

• Why is it FIFO generally good?

• No context switches

• Simple (i.e. fast)

• Seems fair



Aside: Starvation and Sample Bias

• Suppose you want to compare two scheduling 
algorithms
– Create some infinite sequence of arriving tasks
– Start measuring
– Stop at some point
– Compute average response time as the average for 

completed tasks between start and stop

• Problem is at time t: one algorithm has 
completed fewer tasks

• Solution?
– Create fixed trace from infinite



Round Robin

• Each task gets resource for a fixed period of time 
(time quantum Q)

– No starvation, no favoritism

– If task doesn’t complete, it goes back in line

– Pre-emptive as is SJF (STRF)

• Also good:

– Guaranteed “first response” good for interactive jobs

– Q quanta, N jobs, what is worst-case first response?



Round Robin

• Need to pick a time quantum!!

– What if time quantum is too long?  

• Infinite?

– What if time quantum is too short?  

• One instruction?



Round Robin



Round Robin vs. FIFO

• Assuming zero-cost time slice, is Round Robin 
always better than FIFO?
– Same size jobs time-slicing may serve little purpose 

except “initial” response
– Poor average response time
– Mixed workloads can be a problem

• However, for long-running interactive jobs …
– round robin for video streaming
– Even for equal size streams this maintains stable 

progress for all



Round Robin vs. FIFO

What about average response time?



Round Robin = Fairness?

• Is Round Robin always fair?

– Sort of but short jobs finish first!

• What is fair?

– FIFO?

– Equal share of the CPU?

– What if some tasks don’t need their full share?

– Minimize worst case divergence?

• time task would take if no one else was running vs.

• time task takes under scheduling algorithm with other jobs
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Mixed Workload:  Fairness

Problem: work conserving: CPU bound job is ready to roll ….



Max-Min Fairness

• One approach: maximize the minimum allocation 
given to a task (~ min worst case divergence)

– If any task needs less than an equal share, schedule 
the smallest of these first; but how?

– Split the remaining time using max-min

– If all remaining tasks need at least equal share, split 
evenly

– example



Multi-level Feedback Queue (MFQ)

• Hybrid solution: see any before?

• Goals:

– Responsiveness (i.e. for interactive job)

– Low overhead (i.e. limited context switching)

– Starvation freedom: maybe

– Some tasks are high/low priority (mixed workload)

– Fairness (among equal priority tasks)

• Not perfect at any of them!

– Used in Linux, Windows, …



MFQ

• Set of Round Robin queues

– Each queue has a separate priority

• High priority queues have short time slices

– Low priority queues have long time slices

• Scheduler picks first thread in highest priority queue

• Tasks start in highest priority queue

– If time slice expires, task drops one level

Why?



MFQ



Starvation Freedom
• How can starvation still happen?

– Lots of arriving I/O bound jobs

• Solution

– Keep track of how much a job gets over time 
relative to other jobs 

– Can promote a job that has received less than its 
fair share (e.g. 20/150 % for a job sitting in P2)



Uniprocessor Summary (1)

• FIFO is simple and minimizes overhead. 

• If tasks are variable in size, then FIFO can have 
very poor average response time. 

• If tasks are equal in size, FIFO is optimal in terms 
of average response time. 

• If tasks are variable in size, SJF is optimal in 
terms of average response time. 

• SJF is poor in terms of variance in response time. 



Uniprocessor Summary (2)

• If tasks are variable in size, Round Robin 
approximates SJF. 

• If tasks are equal in size, Round Robin will 
have very poor average response time but 
good interactive response time. 

• Tasks that intermix processor and I/O benefit 
from SJF and can do poorly under Round 
Robin. 



Uniprocessor Summary (3)

• Max-Min fairness can improve response time 
for I/O-bound tasks. 

• Round Robin and Max-Min fairness both avoid
starvation. 

• By manipulating the assignment of tasks to 
priority queues, an MFQ scheduler can 
achieve a balance between responsiveness, 
low overhead, and fairness. 
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Multiprocessor Scheduling

• What would happen if we used MFQ on a 
multiprocessor?

– Contention for scheduler spinlock

– Cache slowdown due to ready list data structure 
pinging from one CPU to another

– Limited cache reuse: thread’s data from last time 
it ran is often still in its old cache



Per-Processor Affinity Scheduling

• Each processor has its own ready list

– Protected by a per-processor spinlock

• Put threads back on the ready list where it had 
most recently run: why?

– Ex: when I/O completes, or on Condition->signal

• Work conserving?

• Idle processors can steal work from other 
processors



Per-Processor Multi-level Feedback
with Affinity Scheduling

Load balancing is an issue: may need work stealing



Scheduling Parallel Programs

• What happens if one thread gets time-sliced 
while other threads from the same program 
are still running?

– Assuming program uses locks and condition 
variables, it will still be correct

– What about performance?



Bulk Synchronous Parallelism: Single 
Program Multiple Data (SPMD)

• Loop at each processor:

– Compute on local data (in parallel)

– Barrier

– Send (selected) data to other processors (in parallel)

– Barrier

• Examples:

– MapReduce

– Fluid flow over a wing

– Most parallel algorithms can be recast in BSP



Tail Latency or Makespan

Problem: Limited by the slowest



Dependencies: Pipelines

• What can happen?



Dependencies: Critical Path Delay

What matters is the dark path – why?
Scheduling can be tricky



Scheduling Parallel Programs

Oblivious: each processor time-slices its ready 
list independently of the other processors

Can yield very poor tail latency: even for identical tasks/threads!



Gang Scheduling

Time-slice at the level of an application: OS ensures all threads of an
application run at the same time; Each app gets all processors
Problem?



Parallel Program Speedup

How many processors to use?



Space Sharing

If job can live with a smaller # of dedicated processors …
May be better than time-slicing per job

Standard practice for many years: job declares how many 
processors it wants (may wait) and runs to finish



Problem?

• Solution: Backfilling



Queueing Theory

• Can we predict what will happen to user 
performance:

– If a service becomes more popular?

– If we buy more hardware?

– If we change the implementation to provide more 
features? 



Queueing Model

Assumption: average performance in a stable system,
where ƛ ~= μ;         suppose ƛ > μ? 

suppose ƛ < μ? 

FIFO, work-conserving

arrival rate (ƛ): tasks/time max service/departure rate (μ) : tasks/time



Definitions

• Queueing delay (W): wait time, avg is key

• Number of tasks queued (Q), avg is key

• Service time (S): time to service the request
– μ = 1/S (departure rate)

• Response time (R) = W + S: improve?



Definitions

• Utilization (U): fraction of time the server is busy
– Service time * arrival rate (ƛ)

– S = 1 msec, ƛ = 1000 tasks/sec => 

– S = 1 msec, ƛ = 100 tasks/sec => 

– S = 1 sec, ƛ = 100 tasks/sec => 

• Throughput (X): actual rate of task completions
– X = U * μ

– If stable (no overload), throughput = arrival rate



Little’s Law

Applies to any stable system – where arrivals match departures.

N: number of tasks in the system on average (stable system):
N = X * R

throughput (i.e. arrival rate) * avg response time
(# tasks/time * avg time)

where N ~=  # on the Q and # running

what happens when R goes up?
why is knowing N useful?



Question

Suppose a system has throughput (X) = 100 tasks/s, 
average response time (R) = 50 ms/task

• How many tasks are in the system on average?

• If the server takes 5 ms/task, what is its utilization?

• What is the average wait time?

• What is the average number of queued tasks?



Queueing

• What is the best case scenario for minimizing queueing 
delay (assuming ƛ <= μ) ?
– Keeping arrival rate even, service time constant, no 

queueing!
– Why was there queueing in the previous example?

• Arrivals are not uniform at small time scales: 100 tasks/sec with 5 
ms service time

• When do things worsen (assuming ƛ <= μ)?
– Highly bursty arrivals



Queueing: Best Case



Response Time: Best vs. Worst Case



Next Week

• Queuing theory

• Lottery scheduling

• Start: Address Translation - OSPP Chapter 8

• Have a great weekend!



Queueing: Average Case?

• What is average?
– Gaussian: arrivals are spread out, around a mean value

• Longer you wait, more likely to be done

– Exponential: same but arrivals are memoryless

– Heavy-tailed: arrivals are very bursty
• Longer you wait, longer you will wait

• Can have randomness (with a distribution) in both 
arrivals and service times



Exponential Distribution

Surprisingly accurate!

ƛ : arrival rate
1/ƛ: mean of distribution (e.g. inter-arrival rate)

F(x) = 1 - e -lx

E.g. Prob of next arrival <= 2 sec



Exponential Distribution

Memoryless:
Probability of state transition independent of how long you 
have been in a particular state

Permits closed form solution to state probabilities, 
as function of arrival rate and service rate

State is queue length, e.g.



Response Time vs. Utilization

For exponentially distributed arrivals (stable)



Question

• Exponential arrivals: R = S/(1-U)

• If system is 20% utilized, and load increases by 
5%, how much does response time increase?

– 1.25S vs. 1.33S => few percent

• If system is 90% utilized, and load increases by 
5%, how much does response time increase?

– 10S vs. 20S = 100%!

• So, the upshot is that monitoring U is key



What if Multiple Resources?

• Response time = 

SSi/(1-Ui) over all i resources needed assuming seq.

– network bandwidth, disk I/O, CPU, … (web request)

• Implication

– If you fix one bottleneck, the next highest utilized 
resource will limit performance

– Doubling # of CPUs may not half response time



Overload Management

• What if arrivals occur faster than service can 
handle them
– If do nothing, response time will become infinite

• Turn users away?
– Which ones?  Average response time is best if turn 

away users that have the highest service demand

• Degrade service?
– Compute result with fewer resources

– Example: CNN static front page on 9/11



Highway Congestion (measured)

Solution: on ramps

Unlike best case, 
throughput collapse!

Can happen for 
multithreaded servers



Data Center Case Study

• Load balance requests

• Affinities

• SJF +/ Fair share 

• If sustained U gets too high, provision more

• Ideally, try to predict increase in U
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Scheduling Issues

• Context

– multiple scarce resources: CPU, I/O bw, mem

– concurrently executing clients (~ tasks)

– service requests of varying importance and 
characteristics

• Quality of Service needs differ

– editor, video playback, compilation, simulation, … 



Conventional Scheduling

• We know that SJF does not reflect needs per-se and has 
other problems, as does FIFO, as does RR

• Priority Scheduling
– what does it really mean?

– does p=1 vs. p=2 mean p=1 always gets the CPU or just 2/3? 

• Problems
– often ad hoc

– unable to control service rates to tasks



Solution: Lottery Scheduling

• Easily Understood Behavior

– proportional share

• Flexible Control Over Service Rates

– current schedulers are rigid (e.g. RR-> fixed Q)

• No starvation

– hold a non-zero # of tickets



Lottery Scheduling Basics

• Randomized Mechanism

• Lottery Tickets

– encapsulate resource rights

– issued in different amounts

• Lotteries

– randomly select winning ticket

– grant resource to client/task holding winning ticket



Example Lottery



Lottery Scheduling Advantages

• Probabilistic Guarantees

– n lotteries, client holds t tickets, T total tickets

– p = t/T (prob. of winning = binomial distribution)

– throughput proportional to ticket allocation

• E[w] = np (how many lotteries I will win)

– response time (# of lotteries b4 winning) inversely 
proportional to ticket allocation

• E[n] = 1/p



Relative Rates



Fairness Over Time



Query Processing Rates



Lottery-Scheduled Locks

• Waiting to Acquire
– waiters transfer funding to lock owner

– lock owner inherits aggregate funding to 
acquire CPU

• Release
– return funding to waiters

– hold lottery among waiters

– new winner inherits funding

• Avoids Priority Inversion



Lock Experiment

• Groups of threads A, B with 2:1 Allocation

• Acquire, Hold 50 ms, Release, Compute 50 ms

• Average Waiting Time

– A waits 450 ms, B waits 948 ms

– 1:2.11 response time ratio

• Lock Acquisitions

– A completes 763, B completes 423

– 1.80 : 1 throughput



Next Time

• Address Translation

• OSPP Chapter 8


