
Scheduling

Chapter 7 OSPP

Part I

(skip 7.3, 7.4)

Today

• HW #2 due Thursday

• Lab #1 teams formed

Main Points

• Scheduling policy: what to do next, when
there are multiple threads ready to run

– Or multiple packets to send, or web requests to
serve, or …

– We will focus on processes

– Equally applies to threads

Example

• You manage a web site, that suddenly
becomes wildly popular. Do you?

– Buy more hardware?

– Implement a different scheduling policy?

– Turn away some users? Which ones?

• How much worse will performance get if the
web site becomes even more popular?

• Provide some insight into this problem

Roadmap

• Definitions
– response time, throughput, predictability, …

• Uniprocessor policies
– FIFO, round robin, optimal

– multilevel feedback as approximation of optimal

• Multiprocessor policies
– Affinity scheduling, gang scheduling

• Queueing theory
– Can you predict/improve a system’s response time?

Definitions
• Task/Job

– User request: e.g., mouse click, web request, shell
command, … (I/O and computation)

• Workload
– Set of tasks for system to perform

• Latency/response time
– How long does a task take to complete?

– Response can also be the first CPU slice

• Throughput
– How many tasks can be done per unit of time?

Definitions

• Overhead

– How much extra work is done by the scheduler?

• Fairness

– How equal is the performance received by different users?

• Predictability

– How consistent is the performance over time?

Definitions

• Preemptive scheduler
– If we can take resources away from a running task

• Work-conserving
– Resource is used whenever there is a task to run
– For non-preemptive schedulers, work-conserving is not always

better (i.e. sometimes holding a resource idle is better)

• Scheduling algorithm
– takes a workload as input
– decides which tasks to do first
– Performance metric (throughput, response) as output
– Only preemptive, work-conserving schedulers to be considered

First In First Out (FIFO)

• Schedule tasks in the order they arrive

– Continue running them until they complete or
give up the processor

• On what workloads is FIFO particularly bad?

• Lots of small jobs, a few big ones

• Small ones get stuck behind big ones

• Jobs that never end

Shortest Job First (SJF)

• Always do the task that has the shortest
remaining amount of work to do
– Often called Shortest Remaining Time First (SRTF)

• Suppose we have five tasks arrive one right
after each other, but the first one is much
longer than the others
– Which completes first in FIFO?

– Which completes first in SJF?

FIFO vs. SJF

Question

• Claim: SJF is optimal for average response time
– Why? Easy to prove by contradiction.

• Does SJF have any downsides?
• Starvation (particularly for STRF: pre-emptive)
• Wide variation in response (short are short, long

are LOOONNNGGGGG)
• Have to know run lengths

Can we do SJF in practice?

• May be hard at OS level since tasks are black
boxes but concept can be widely applied

• Think about Web requests

– You can queue web requests

– Prioritize small ones v. large ones

– Other examples?

• FB post: text only, image

• Disk I/O: favor short ones?

Question

• Is FIFO ever optimal?

– Yes, when all requests are of equal length

• Why is it FIFO generally good?

• No context switches

• Simple (i.e. fast)

• Seems fair

Aside: Starvation and Sample Bias

• Suppose you want to compare two scheduling
algorithms
– Create some infinite sequence of arriving tasks
– Start measuring
– Stop at some point
– Compute average response time as the average for

completed tasks between start and stop

• Problem is at time t: one algorithm has
completed fewer tasks

• Solution?
– Create fixed trace from infinite

Round Robin

• Each task gets resource for a fixed period of time
(time quantum Q)

– No starvation, no favoritism

– If task doesn’t complete, it goes back in line

– Pre-emptive as is SJF (STRF)

• Also good:

– Guaranteed “first response” good for interactive jobs

– Q quanta, N jobs, what is worst-case first response?

Round Robin

• Need to pick a time quantum!!

– What if time quantum is too long?

• Infinite?

– What if time quantum is too short?

• One instruction?

Round Robin

Round Robin vs. FIFO

• Assuming zero-cost time slice, is Round Robin
always better than FIFO?
– Same size jobs time-slicing may serve little purpose

except “initial” response
– Poor average response time
– Mixed workloads can be a problem

• However, for long-running interactive jobs …
– round robin for video streaming
– Even for equal size streams this maintains stable

progress for all

Round Robin vs. FIFO

What about average response time?

Round Robin = Fairness?

• Is Round Robin always fair?

– Sort of but short jobs finish first!

• What is fair?

– FIFO?

– Equal share of the CPU?

– What if some tasks don’t need their full share?

– Minimize worst case divergence?

• time task would take if no one else was running vs.

• time task takes under scheduling algorithm with other jobs

Scheduling

Chapter 7 OSPP

Mixed Workload: Fairness

Problem: work conserving: CPU bound job is ready to roll ….

Max-Min Fairness

• One approach: maximize the minimum allocation
given to a task (~ min worst case divergence)

– If any task needs less than an equal share, schedule
the smallest of these first; but how?

– Split the remaining time using max-min

– If all remaining tasks need at least equal share, split
evenly

– example

Multi-level Feedback Queue (MFQ)

• Hybrid solution: see any before?

• Goals:

– Responsiveness (i.e. for interactive job)

– Low overhead (i.e. limited context switching)

– Starvation freedom: maybe

– Some tasks are high/low priority (mixed workload)

– Fairness (among equal priority tasks)

• Not perfect at any of them!

– Used in Linux, Windows, …

MFQ

• Set of Round Robin queues

– Each queue has a separate priority

• High priority queues have short time slices

– Low priority queues have long time slices

• Scheduler picks first thread in highest priority queue

• Tasks start in highest priority queue

– If time slice expires, task drops one level

Why?

MFQ

Starvation Freedom
• How can starvation still happen?

– Lots of arriving I/O bound jobs

• Solution

– Keep track of how much a job gets over time
relative to other jobs

– Can promote a job that has received less than its
fair share (e.g. 20/150 % for a job sitting in P2)

Uniprocessor Summary (1)

• FIFO is simple and minimizes overhead.

• If tasks are variable in size, then FIFO can have
very poor average response time.

• If tasks are equal in size, FIFO is optimal in terms
of average response time.

• If tasks are variable in size, SJF is optimal in
terms of average response time.

• SJF is poor in terms of variance in response time.

Uniprocessor Summary (2)

• If tasks are variable in size, Round Robin
approximates SJF.

• If tasks are equal in size, Round Robin will
have very poor average response time but
good interactive response time.

• Tasks that intermix processor and I/O benefit
from SJF and can do poorly under Round
Robin.

Uniprocessor Summary (3)

• Max-Min fairness can improve response time
for I/O-bound tasks.

• Round Robin and Max-Min fairness both avoid
starvation.

• By manipulating the assignment of tasks to
priority queues, an MFQ scheduler can
achieve a balance between responsiveness,
low overhead, and fairness.

Scheduling

Chapter 7 OSPP

Part II

Multiprocessor Scheduling

• What would happen if we used MFQ on a
multiprocessor?

– Contention for scheduler spinlock

– Cache slowdown due to ready list data structure
pinging from one CPU to another

– Limited cache reuse: thread’s data from last time
it ran is often still in its old cache

Per-Processor Affinity Scheduling

• Each processor has its own ready list

– Protected by a per-processor spinlock

• Put threads back on the ready list where it had
most recently run: why?

– Ex: when I/O completes, or on Condition->signal

• Work conserving?

• Idle processors can steal work from other
processors

Per-Processor Multi-level Feedback
with Affinity Scheduling

Load balancing is an issue: may need work stealing

Scheduling Parallel Programs

• What happens if one thread gets time-sliced
while other threads from the same program
are still running?

– Assuming program uses locks and condition
variables, it will still be correct

– What about performance?

Bulk Synchronous Parallelism: Single
Program Multiple Data (SPMD)

• Loop at each processor:

– Compute on local data (in parallel)

– Barrier

– Send (selected) data to other processors (in parallel)

– Barrier

• Examples:

– MapReduce

– Fluid flow over a wing

– Most parallel algorithms can be recast in BSP

Tail Latency or Makespan

Problem: Limited by the slowest

Dependencies: Pipelines

• What can happen?

Dependencies: Critical Path Delay

What matters is the dark path – why?
Scheduling can be tricky

Scheduling Parallel Programs

Oblivious: each processor time-slices its ready
list independently of the other processors

Can yield very poor tail latency: even for identical tasks/threads!

Gang Scheduling

Time-slice at the level of an application: OS ensures all threads of an
application run at the same time; Each app gets all processors
Problem?

Parallel Program Speedup

How many processors to use?

Space Sharing

If job can live with a smaller # of dedicated processors …
May be better than time-slicing per job

Standard practice for many years: job declares how many
processors it wants (may wait) and runs to finish

Problem?

• Solution: Backfilling

Queueing Theory

• Can we predict what will happen to user
performance:

– If a service becomes more popular?

– If we buy more hardware?

– If we change the implementation to provide more
features?

Queueing Model

Assumption: average performance in a stable system,
where ƛ ~= μ; suppose ƛ > μ?

suppose ƛ < μ?

FIFO, work-conserving

arrival rate (ƛ): tasks/time max service/departure rate (μ) : tasks/time

Definitions

• Queueing delay (W): wait time, avg is key

• Number of tasks queued (Q), avg is key

• Service time (S): time to service the request
– μ = 1/S (departure rate)

• Response time (R) = W + S: improve?

Definitions

• Utilization (U): fraction of time the server is busy
– Service time * arrival rate (ƛ)

– S = 1 msec, ƛ = 1000 tasks/sec =>

– S = 1 msec, ƛ = 100 tasks/sec =>

– S = 1 sec, ƛ = 100 tasks/sec =>

• Throughput (X): actual rate of task completions
– X = U * μ

– If stable (no overload), throughput = arrival rate

Little’s Law

Applies to any stable system – where arrivals match departures.

N: number of tasks in the system on average (stable system):
N = X * R

throughput (i.e. arrival rate) * avg response time
(# tasks/time * avg time)

where N ~= # on the Q and # running

what happens when R goes up?
why is knowing N useful?

Question

Suppose a system has throughput (X) = 100 tasks/s,
average response time (R) = 50 ms/task

• How many tasks are in the system on average?

• If the server takes 5 ms/task, what is its utilization?

• What is the average wait time?

• What is the average number of queued tasks?

Queueing

• What is the best case scenario for minimizing queueing
delay (assuming ƛ <= μ) ?
– Keeping arrival rate even, service time constant, no

queueing!
– Why was there queueing in the previous example?

• Arrivals are not uniform at small time scales: 100 tasks/sec with 5
ms service time

• When do things worsen (assuming ƛ <= μ)?
– Highly bursty arrivals

Queueing: Best Case

Response Time: Best vs. Worst Case

Next Week

• Queuing theory

• Lottery scheduling

• Start: Address Translation - OSPP Chapter 8

• Have a great weekend!

Queueing: Average Case?

• What is average?
– Gaussian: arrivals are spread out, around a mean value

• Longer you wait, more likely to be done

– Exponential: same but arrivals are memoryless

– Heavy-tailed: arrivals are very bursty
• Longer you wait, longer you will wait

• Can have randomness (with a distribution) in both
arrivals and service times

Exponential Distribution

Surprisingly accurate!

ƛ : arrival rate
1/ƛ: mean of distribution (e.g. inter-arrival rate)

F(x) = 1 - e -lx

E.g. Prob of next arrival <= 2 sec

Exponential Distribution

Memoryless:
Probability of state transition independent of how long you
have been in a particular state

Permits closed form solution to state probabilities,
as function of arrival rate and service rate

State is queue length, e.g.

Response Time vs. Utilization

For exponentially distributed arrivals (stable)

Question

• Exponential arrivals: R = S/(1-U)

• If system is 20% utilized, and load increases by
5%, how much does response time increase?

– 1.25S vs. 1.33S => few percent

• If system is 90% utilized, and load increases by
5%, how much does response time increase?

– 10S vs. 20S = 100%!

• So, the upshot is that monitoring U is key

What if Multiple Resources?

• Response time =

SSi/(1-Ui) over all i resources needed assuming seq.

– network bandwidth, disk I/O, CPU, … (web request)

• Implication

– If you fix one bottleneck, the next highest utilized
resource will limit performance

– Doubling # of CPUs may not half response time

Overload Management

• What if arrivals occur faster than service can
handle them
– If do nothing, response time will become infinite

• Turn users away?
– Which ones? Average response time is best if turn

away users that have the highest service demand

• Degrade service?
– Compute result with fewer resources

– Example: CNN static front page on 9/11

Highway Congestion (measured)

Solution: on ramps

Unlike best case,
throughput collapse!

Can happen for
multithreaded servers

Data Center Case Study

• Load balance requests

• Affinities

• SJF +/ Fair share

• If sustained U gets too high, provision more

• Ideally, try to predict increase in U

Scheduling

Chapter 7 OSPP

Part III: Lottery Scheduling

(much shortened)

Scheduling Issues

• Context

– multiple scarce resources: CPU, I/O bw, mem

– concurrently executing clients (~ tasks)

– service requests of varying importance and
characteristics

• Quality of Service needs differ

– editor, video playback, compilation, simulation, …

Conventional Scheduling

• We know that SJF does not reflect needs per-se and has
other problems, as does FIFO, as does RR

• Priority Scheduling
– what does it really mean?

– does p=1 vs. p=2 mean p=1 always gets the CPU or just 2/3?

• Problems
– often ad hoc

– unable to control service rates to tasks

Solution: Lottery Scheduling

• Easily Understood Behavior

– proportional share

• Flexible Control Over Service Rates

– current schedulers are rigid (e.g. RR-> fixed Q)

• No starvation

– hold a non-zero # of tickets

Lottery Scheduling Basics

• Randomized Mechanism

• Lottery Tickets

– encapsulate resource rights

– issued in different amounts

• Lotteries

– randomly select winning ticket

– grant resource to client/task holding winning ticket

Example Lottery

Lottery Scheduling Advantages

• Probabilistic Guarantees

– n lotteries, client holds t tickets, T total tickets

– p = t/T (prob. of winning = binomial distribution)

– throughput proportional to ticket allocation

• E[w] = np (how many lotteries I will win)

– response time (# of lotteries b4 winning) inversely
proportional to ticket allocation

• E[n] = 1/p

Relative Rates

Fairness Over Time

Query Processing Rates

Lottery-Scheduled Locks

• Waiting to Acquire
– waiters transfer funding to lock owner

– lock owner inherits aggregate funding to
acquire CPU

• Release
– return funding to waiters

– hold lottery among waiters

– new winner inherits funding

• Avoids Priority Inversion

Lock Experiment

• Groups of threads A, B with 2:1 Allocation

• Acquire, Hold 50 ms, Release, Compute 50 ms

• Average Waiting Time

– A waits 450 ms, B waits 948 ms

– 1:2.11 response time ratio

• Lock Acquisitions

– A completes 763, B completes 423

– 1.80 : 1 throughput

Next Time

• Address Translation

• OSPP Chapter 8

