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Caching: Address Translation, and 
Virtual Memory

• Caching

– Speed up address translation (TLB)

– Implement virtual memory (memory as a cache 
for backing store): demand-paging

– Memory-mapped files



Definitions
• Cache

– Copy of data that is faster to access than the original
– Hit: if cache has copy
– Miss: if cache does not have copy

• Cache block
– Unit of cache storage (multiple memory locations)

• Temporal locality
– Programs tend to reference the same memory locations 

multiple times
– Example: instructions in a loop

• Spatial locality
– Programs tend to reference nearby locations
– Example: data in a loop



Cache Concept (Read)

Retrieve



TLB and Page Table Translation



Memory Hierarchy

i7 has 8MB as shared 3rd level cache; 2nd level cache is per-core



Main Points

• Can we provide the illusion of near infinite 
memory in limited physical memory?
– Demand-paged virtual memory

– Memory-mapped files

• How do we choose which page to replace?
– FIFO, MIN, LRU, LFU, Clock

• What types of workloads does caching work 
for, and how well?
– Spatial/temporal locality vs. Zipf workloads



Hardware address translation
is a power tool

• Kernel trap on read/write to selected addresses

– Copy on write

– Fill on reference

– Zero on use

– Demand paged virtual memory

– Modified bit emulation

– Memory mapped files

– Use bit emulation



Demand Paging (Before)



Demand Paging (After)



Caching and Demand-Paged 
Virtual Memory

Chapter 9 OSPP



Today

• Virtual memory

• Lab #2



Demand Paging – quick walk

1. TLB miss

2. Page table walk

3. Page fault (page invalid 
in page table)

4. Trap to kernel

5. Convert virtual address 
to file + offset

6. Allocate page frame
– Evict page if needed

7. Initiate disk block read 
into page frame

8. Disk interrupt when 
DMA complete

9. Mark page as valid

10. Resume process at 
faulting instruction

11. TLB miss

12. Page table walk to fetch 
translation

13. Execute instruction

One page table per process!



Allocating a Page Frame

• Select old page to evict – which one?

• Find all page table entries that refer to old page

– If page frame is shared

• Set each page table entry to invalid

• Remove any TLB entries

– Copies of now invalid page table entry

• Write changes on page back to disk, if 
necessary



How do we know if page has been 
modified?

• Every page table entry has some bookkeeping 

– Has page been modified? Dirty bit.

• Set by hardware on store instruction

• In both TLB and page table entry

– Has page been recently used? In use bit.

• Set by hardware in page table entry 

• Bookkeeping bits can be reset by the OS kernel

– When changes to page are flushed to disk

– To track whether page is recently used



Keeping Track of Page Modifications
(Before)



Keeping Track of Page Modifications
(After)



Virtual or Physical Dirty/Use Bits

• Most machines keep dirty/use bits in the page 
table entry

• Physical page is

– Modified if any page table entry that points to it is 
modified

– Recently used if any page table entry that points 
to it is recently used



Tidbit: Emulating a Modified Bit

• Some processor archs. do not keep a modified bit per page
– Extra bookkeeping and complexity

• Kernel can emulate a modified bit:
– Set all clean pages as read-only
– On first write to page, trap into kernel
– Kernel sets modified bit, marks page as read-write
– Resume execution

• Kernel needs to keep track of both
– Current page table permission (e.g., read-only)
– True page table permission (e.g., writeable)

• Can also emulate a recently used bit



Memory-Mapped Files

• Explicit read/write system calls for files
– Data copied to user process using system call
– Application operates on data
– Data copied back to kernel using system call

• Memory-mapped files
– Open file as a memory segment
– Program uses load/store instructions on segment memory, 

implicitly operating on the file
– Page fault if portion of file is not yet in memory
– Kernel brings missing blocks into memory, restarts 

instruction
– mmap in Linux



Advantages to Memory-mapped Files

• Programming simplicity, esp for large files

– Operate directly on file, instead of copy in/copy out

• Zero-copy I/O

– Data brought from disk directly into page frame

• Pipelining

– Process can start working before all the pages are 
populated  (automatically)

• Interprocess communication

– Shared memory segment vs. temporary file



From Memory-Mapped Files to 
Demand-Paged Virtual Memory

• Every process segment backed by a file on disk

– Code segment -> code portion of executable

– Data, heap, stack segments -> temp files

– Shared libraries -> code file and temp data file

– Memory-mapped files -> memory-mapped files

– When process ends, delete temp files

• Unified memory management across file 
buffer and process memory



Memory is a Cache for Disk: Cache 
Replacement Policy?

• On a cache miss, how do we choose which 
entry to replace?
– Assuming the new entry is more likely to be used 

in the near future

– In direct mapped caches, not an issue!

• Policy goal: reduce cache misses
– Improve expected case performance

– Also: reduce likelihood of very poor performance



A Simple Policy

• Random?

– Replace a random entry

• FIFO?

– Replace the entry that has been in the cache the 
longest time

– What could go wrong?



FIFO in Action

Worst case for FIFO is if program strides through 
memory that is larger than the cache



MIN

• MIN

– Replace the cache entry that will not be used for 
the longest time into the future

– Optimality proof based on exchange: if evict an 
entry used sooner, that will trigger an earlier 
cache miss

– Can we know the future?

– Maybe: compiler might be able to help. 



LRU, LFU

• Least Recently Used (LRU)
– Replace the cache entry that has not been used for the 

longest time in the past

– Approximation of MIN

– Past predicts the future: code?

• Least Frequently Used (LFU)
– Replace the cache entry used the least often (in the recent 

past)

– Important to focus on recent past: why?

– Mountain hut URL just visited vs. Katy Perry a few minutes ago





Belady’s Anomaly

More memory does worse! LRU does not suffer from this.
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Today

• HW #3 out

• See on-line schedule for date changes

– Exam #1 is 11/9; Lab #2 extended (small changes posted)

• VM continued

• Multi-level

• Thursday: won’t cover all of memory hog paper



Lab #2

• Briefly



True LRU

• Hard to do in practice: why?

– Hardware just has a single reference bit

– Even if could store a clock value in the PT, would 
have to somehow order the entries and/or go 
through all of memory to determine LRU



Clock Algorithm: Estimating LRU

• Periodically, sweep through 
all/some pages 

• If page is unused, reclaim 

(no chance)

• If page is used, mark as 
unused 

• remember clock hand for 

next time



Nth Chance: Not Recently Used

• Instead of one bit per page, keep an integer
– notInUseSince: number of sweeps since last use

• Periodically sweep through all page frames
if (page is used) {

notInUseSince = 0;
} else if (notInUseSince < N) {

notInUseSince++;
} else {

reclaim page;
}



Paging Daemon

• Periodically run some version of clock/Nth 
chance: background

• Goal to keep # of free frames > %

• Clean (write-back) and free frames as needed



Recap

• MIN is optimal

– replace the page or cache entry that will be used 
farthest into the future

• LRU is an approximation of MIN

– For programs that exhibit spatial and temporal 
locality

• Clock/Nth Chance is an approximation of LRU

– Bin pages into sets of “not recently used”



Working Set Model

• Working Set (WS): set of memory locations that need 
to be cached for reasonable cache hit rate 
– top: RES(ident) field (~ WS)

– Driven by locality

– Programs get whatever they need (to a point)

– Pages accessed in last t time or k accesses

– Uses some version of clock (conceptually): min-max WS

• Thrashing: when cache (i.e. memory) is too small
– S of WSi > Memory for all i running processes



Cache Working Set

Working set



Memory Hogs

• How many pages to give each process?

• Ideally their working set

• But a hog or rogue can steal pages

– For global page stealing, thrashing can cascade

• Solution: self-page

– Problem?

– Local solutions (e.g. multiple queues) are suboptimal



Lab #2: VM Page Replacement

Cannot change the
hardware

Can change the OS
(main.c)

Problem: you cannot modify the page table! Emulate.



Lab #2

• We provide page table and backing store; just use it.

• Study the code (i.e. the “mechanism”) figure it out!
– See: two memory-mapped files for VAS and PMEM and a disk 

store file

• Memory-mapped I/O
– VAS is mapped to a “file” on backing store

• Emulating “states” by changing protections on memory-
mapped VAS (mprotect)

• Catch SIGSEGV in your user-level “OS” and take action



Hardware

• Emulate bits using memory protection fields

– PROT_READ: read (accessed)

– PROT_WRITE: written (dirty)

– PROT_NONE: no rights (valid)



Next Week

• Wrap up memory next week

– Caching, Address translation and a Paper to read

• Have a great weekend!


