
Address Translation

Chapter 8 OSPP

Part I: Advanced



Sparse Address Spaces

• What if virtual address space is large?
– 32-bits, 4KB pages => 500K page table entries
– 64-bits => 4 quadrillion page table entries

– Famous quote:
– “Any programming problem can be solved by adding a 

level of indirection”

• Today’s OS allocate page tables on the fly, even on the 
backing store!
– Allocate/fill only page table entries that are in use
– STILL, can be really big



Multi-level Translation

• Tree of translation tables

– Multi-level page tables

– Paged segmentation 

– Multi-level paged segmentation

• Stress: hardware is doing the translation!

• Page the page table or the segments! … or both



Address-Translation Scheme

• Address-translation scheme for a two-level 
32-bit paging architecture

p2p1

p1

d

dp2

Outer-page
table page of page

table

logical
address

This contains the 
mapping between 
logical page i of 
page table and 
frame in memory

Hold several PTEs

<board>



Two-Level Paging Example
• A VA on a 32-bit machine with 4K page size is divided into:

– a page number consisting of 20 bits

– a page offset consisting of 12 bits (set by hardware/OS)

– assume trivial PTE of 4 bytes (just frame #)

• Since the page table is paged, the page number is further divided into:

– a 10-bit page number

– a 10-bit page offset (to each PTE)

• Thus, a VA is as follows:

• where pi is an index into the outer page table, and p2 is the displacement within the 
page of the outer page table (i.e the PTE entry).

page number page offset

pi p2 d

10 10 12



Multi-level Page Tables
• How big should the outer-page table be? 

Size of the page table for process (PTE is 4): 220x4=222

Page this (divide by page size): 222/212 = 210

Answer: 210 x4=212

• How big is the virtual address space now? 
Still 232

• Have we reduced the amount of memory required 
for paging?
Nope – just reduced the amount of contiguous memory 
required: outer page table is smaller by factor of page 
size

Page tables and
Process memory are
paged



Address Translation

Chapter 8 OSPP

Part I: Advanced



Today

• Multi-level translation

• TLB + caching

• Memory hogs paper: much reduced



Multilevel Paging

• Can keep paging!

What CS concept does you
remind you of?



Multilevel Paging and Performance

• Can take 3 memory accesses (if TLB miss)

• Suppose TLB access time is 20 ns, 100 ns to memory

• Cache hit rate of 98 percent yields:
effective access time = 0.98 x 120 + 0.02 x 320 = 124 nanoseconds
24% slowdown

• Can add more page tables and can show that slowdown 
grows slowly:

3-level: 26 %

4-level: 28%

• Q: why would I want to do this!



Paged Segmentation

• Process memory is segmented
• Segment table entry:

– Pointer to page table
– Page table length (# of pages in segment)
– Access permissions

• Page table entry:
– Page frame
– Access permissions

• Share/protection at either page or segment-level
• <board>



Paged Segmentation (Implementation)
Compare to multi-level paging?



Multilevel Translation

• Pros:

– Simple and flexible memory allocation (i.e. pages)

– Share at segment or page level

– Reduced fragmentation

• Cons:

– Space overhead: extra pointers

– Two (or more) lookups per memory reference, but TLB



Portability

• Many operating systems keep their own memory 
translation data structures for portability, e.g.
– List of memory objects (segments), e.g. fill-from location

– Virtual page -> physical page frame (shadow page table)
• Different from h/w: extra bits (C-on-Write, Z-on-Ref, clock bits)

– Physical page frame -> set of virtual pages 
• Why?

• Inverted page table : replace all page tables; solve 
– Hash from virtual page -> physical page

– Space proportional to # of physical pages frames – sort of

– <board>



Inverted Page Table
pid, vpn, frame, permissions



Address Translation

Chapter 8 OSPP

Part I: Advanced



Back to TLBs

Pr(TLB hit) * cost of TLB lookup +

Pr(TLB miss) * cost of page table lookup 



TLB and Page Table Translation



TLB Miss

• Done all in hardware

• Or in software (software-loaded TLB)

– Since TLB miss is rare …

– Trap to the OS on TLB miss

– Let OS do the lookup and insert into the TLB

– A little slower … but simpler hardware



TLB Lookup
TLB usually a set-associative cache:
Direct hash VPN to a set, but can be anywhere in the set

Access: permissions (early handling of exceptions, 
copy-on-write)



TLB is critical

• What happens on a context switch?

– Discard TLB? Pros?

– Reuse TLB? Pros?

• Reuse Solution: Tagged TLB

– Each TLB entry has process ID

– TLB hit only if process ID matches current process



Avoid flushing the TLB on a context-switch



TLB consistency

• What happens when the OS changes the 
permissions on a page?
– For demand paging, copy on write, zero on reference, … 

or is marked invalid!

• TLB may contain old translation or permissions
– OS must ask hardware to purge TLB entry

• On a multicore: TLB shootdown
– OS must ask each CPU to purge TLB entry

– Similar to above



TLB Shootdown

W



TLB Optimizations



Virtually Addressed vs. Physically 
Addressed Data Caches

• How about we cache data!

• Too slow to first access TLB to find physical 
address … particularly for a TLB miss
– VA -> PA -> data

– VA -> data

• Instead, first level cache is virtually addressed

• In parallel, access TLB to generate physical address 
(PA) in case of a cache miss
– VA -> PA -> data



Virtually Addressed Caches

Same issues w/r to context-switches and 
consistency



Aliasing Solution 2: Physically 
Addressed Cache

Cache physical translations: at any level! (e.g. frame->data) 



Superpages

• On many systems, TLB entry can be
– A page

– A superpage: a set of contiguous pages

• x86: superpage is set of pages in one page table
– superpage is memory contiguous

– x86 also supports a variety of page sizes, OS can choose
• 4KB

• 2MB

• 1GB



Walk an Entire Chunk of Memory

• Video Frame Buffer: 
– 32 bits x 1K x 1K = 4MB

• Very large working set!
– Draw a horizontal vertical line

– Lots of TLB misses

• Superpage can reduce this
– 4MB page



Superpages

Issues: allocation, promotion and demotion



Next Time

• File systems

• Chap 11, OSPP

• Have a great weekend!


