
Address Translation

Chapter 8 OSPP

Part I: Basics

Important?

• Process isolation

• IPC

• Shared code

• Program initialization

• Efficient dynamic memory allocation

• Cache management

• Debugging

• Efficient I/O

• Memory mapped files

• Virtual memory

• Checkpoint/restart

• ...

All problems in computer
science can be solved by
another level of indirection!

Main Points

• Address Translation Concept
– How do we convert a virtual address to a physical address?

• Flexible Address Translation
– Base and bound
– Segmentation
– Paging
– Multilevel translation

• Efficient Address Translation
– Translation Lookaside Buffers (TLB)
– Virtually and physically addressed caches

Address Translation Concept

Address Translation Goals

• Memory protection
• Memory sharing

– Shared libraries, shared-memory IPC

• Sparse addresses (64 bit addresses)
– Multiple regions of dynamic allocation (heaps/stacks)
– Allow room for growth

• Efficiency
– Memory placement
– Runtime lookup
– Compact translation tables

• Portability
– OS must exploit hardware

Bonus Feature

• What can you (OS) do if you can (selectively)
gain control whenever a program reads or
writes a particular virtual memory location?

• Examples:
– Copy on write

– Zero on reference

– Demand paging

– Fill on demand

– Memory mapped files

Virtually Addressed Base and Bounds

Hardware support is minimal: base register, bound register

Given VA, what is the PA?

Question

• With virtually addressed base and bounds,
what is saved/restored on a process context
switch?

– Usually just the base and bound register

Virtually Addressed Base and Bounds

• Pros?

– Simple

– Fast (2 registers, adder, comparator)

– Safe

– Can relocate in physical memory without changing process

• Cons?

– Can’t share code/data with other processes

– Can’t grow stack/heap as needed

– Fragmentation

Segmentation

• Segment is a contiguous region of virtual memory

• Each process has a segment table (in hardware or mem)

– Entry in table for each segment

• Segment can be located anywhere in physical memory

– Each segment has: start, length, access permission

• Processes can share segments

– Same start, length, same/different access permissions

– Great for shared libraries

Logical View

1

3

2

4

1

4

2

3

user space physical memory space

Segmentation

Hardware support: segment table start and length register (# segs)

Question

• With segmentation, what is saved/restored on
a process context switch?

– assuming segment table is in memory, just the
segment table start and end pointer registers

– if segment table fits in registers (small), then
would need to save/restore the entire table

UNIX fork and Copy on Write

• UNIX fork
– Makes a complete copy of a process

• Segments allow a more efficient implementation
– Copy segment table into child

– Mark parent and child segments read-only

– Start child process; return to parent

– If child or parent writes to a segment (ex: stack, heap)
• trap into kernel

• make a copy of the segment and resume

Dynamic Segments & Zero-on-Reference

• Dynamic segments: not all impl. allow this
– When program uses memory beyond bound (e.g. end of stack)

– Segmentation fault into OS kernel

– Kernel can then allocate some additional memory
• How much?

• Zeros the memory
– idea: set segment bound (i.e. stack) artificially low

– at seg fault, kernel zeros the memory

– avoid accidentally leaking information!

• Modify segment table

• Resume process

More on zero’ing

• If data is so sensitive, why not have programs
zero their own memory?

– bzero system call

• Background: when CPU is idle, we can zero
memory not currently allocated

Segmentation

• Pros?
– Can share code/data segments between processes
– Can protect code segment from being overwritten
– Can transparently grow stack/heap as needed - maybe
– Can detect if need to copy-on-write/zero-on-ref
– Matches programmer view with memory view

• Cons?
– Complex memory management

• Need to find chunk of a particular size

– May need to rearrange memory from time to time to
make room for new segment or growing segment
• External fragmentation: wasted space between chunks

Solve Fragmentation: Paged Translation

• Manage memory in fixed size units, or pages

• Finding a free page is easy
– Bitmap allocation: 0011111100000001100

– Each bit represents one physical page frame

• Each process has its own page table
– Stored in physical memory

• Hardware registers
• pointer to page table start

• page table length

Paged Translation (Abstract)

Paged Translation (Implementation)

A
B
C
D

E
F
G
H

I
J
K
L

I
J
K
L

E
F
G
H

A
B
C
D

4

3

1

Page Table

Process View Physical Memory

Page 0

Page 1

Page 2

Frame 0

Frame 1

Frame 2

Frame 3

Frame 4

Example

Comparison

• Like segmentation, paging adds a level of
indirection

• Page size is smaller than segment size
generally

• What about translation overhead?

• What about memory overhead (size) of paging
vs. segmentation?

Paging Questions

• With paging, what is saved/restored on a
process context switch?
– Pointer to page table, size of page table

– Page table itself is in main memory

• What if page size is very small?
– Big page tables, lots of I/O (as we will see)

• What if page size is very large?
– Internal fragmentation: if we don’t need all of the

space inside a fixed size chunk

Paging and Copy on Write

• Can we share memory between processes?
– Set entries in both page tables to point to same page frames

– Need core map of page frames to track which processes are
pointing to which page frames (e.g., reference count): why?

• UNIX fork with copy on write
– Copy page table of parent into child process

– Mark all pages (in new and old page tables) as read-only

– Trap into kernel on write (in child or parent)

– Copy page

– Mark both as writeable

– Resume execution

Demand Paging/Fill On Demand

• Can I start running a program before its code is in
physical memory?

– Set all page table entries to invalid

– When a page is referenced for first time, kernel trap,
“page fault”

– Kernel brings page in from disk

– Resume execution

– Remaining pages can be transferred in the
background while program is running

Data Breakpoints

• Please trace variable A

• Mark page P containing A as read-only

• If P is changed, trap into kernel, and see if A
actually changed?

• Why is this better with paging vs. segmentation?

Page Table Issue

• 64 bit machines

• Page table(s) can get huge

• Need to address this

• 16 bit page size, 50 bits for pages, 2^50
entries in PT PER process!

Next Week

• Chapter 9 virtual memory

• Chapter 8; multi-level translation

