Address Translation

Chapter 8 OSPP

Part |;: Basics

Important?

Process isolation

IPC

Shared code
Program initialization
Efficient dynamic memory allocation
Cache management
Debugging

Efficient |/O

Memory mapped files

All problems in computer
science can be solved by
another level of indirection!
Virtual memory

Checkpoint/restart

Main Points

* Address Translation Concept
— How do we convert a virtual address to a physical address?

* Flexible Address Translation
— Base and bound
— Segmentation
— Paging
— Multilevel translation

e Efficient Address Translation
— Translation Lookaside Buffers (TLB)
— Virtually and physically addressed caches

Address Translation Concept

Fisin
Pracessor [--—-—-—-—-—+| Translatian | Imealid s 0 0

lllllll

Fhigs ko al

Memany
11111111

sssssss

&k

Address Translation Goals

Memory protection

Memory sharing
— Shared libraries, shared-memory IPC

Sparse addresses (64 bit addresses)
— Multiple regions of dynamic allocation (heaps/stacks)
— Allow room for growth

Efficiency

— Memory placement

— Runtime lookup

— Compact translation tables
Portability

— OS must exploit hardware

Bonus Feature

 What can you (OS) do if you can (selectively)
gain control whenever a program reads or
writes a particular virtual memory location?

 Examples:
— Copy on write
— Zero on reference
— Demand paging
— Fill on demand
— Memory mapped files

Virtually Addressed Base and Bounds

Processor's View Implementatinn Physical
MEF‘I‘IDI}{
Virtual Basa
I'l. ¥ . . . E
Virtual — emory Virtual Physical e
Address Address @ Addross
Basos
E":':‘md Bound
¥ Raise
'@ ' Exception
Given VA, what is the PA?

Hardware support is minimal: base register, bound register

Question

* With virtually addressed base and bounds,
what is saved/restored on a process context
switch?

— Usually just the base and bound register

Virtually Addressed Base and Bounds

* Pros?
— Simple
— Fast (2 registers, adder, comparator)
— Safe
— Can relocate in physical memory without changing process

* Cons?
— Can’t share code/data with other processes

— Can’t grow stack/heap as needed

— Fragmentation

Segmentation

Segment is a contiguous region of virtual memory

Each process has a segment table (in hardware or mem)
— Entry in table for each segment

Segment can be located anywhere in physical memory
— Each segment has: start, length, access permission

Processes can share segments

— Same start, length, same/different access permissions
— Great for shared libraries

Logical View

user space physical memory space

Segmentation

Hardware support: segment table start and length register (# segs)

Question

With segmentation, what is saved/restored on
a process context switch?

— assuming segment table is in memory, just the
segment table start and end pointer registers

— if segment table fits in registers (small), then
would need to save/restore the entire table

UNIX fork and Copy on Write

 UNIX fork

— Makes a complete copy of a process

* Segments allow a more efficient implementation
— Copy segment table into child
— Mark parent and child segments read-only
— Start child process; return to parent

— If child or parent writes to a segment (ex: stack, heap)
 trap into kernel
* make a copy of the segment and resume

Processor’s View

Process1's View

Processor|-

Virtual
Memory

> [

Virtual
Address
0x0500

Code

Data

Heap

Stack

Implementation

Base

Segment Table
Bound Access

Read

R/W

R/W

Processor
Seg. Offset
;---a 0 500 Code
Virtual Data
Address Heap
Stack

R/W

Physical Address

Physical
Memory

PZs
Data

P1s
Heap

P1s
Stack

Dynamic Segments & Zero-on-Reference

Dynamic segments: not all impl. allow this
— When program uses memory beyond bound (e.g. end of stack)
— Segmentation fault into OS kernel

— Kernel can then allocate some additional memory
* How much?

Zeros the memory

— idea: set segment bound (i.e. stack) artificially low
— at seg fault, kernel zeros the memory

— avoid accidentally leaking information!

Modify segment table
Resume process

More on zero’ing

 |f data is so sensitive, why not have programs
zero their own memory?

— bzero system call

* Background: when CPU is idle, we can zero
memory not currently allocated

Segmentation

* Pros?
— Can share code/data segments between processes
— Can protect code segment from being overwritten
— Can transparently grow stack/heap as needed - maybe
— Can detect if need to copy-on-write/zero-on-ref
— Matches programmer view with memory view
* Cons?
— Complex memory management
* Need to find chunk of a particular size

— May need to rearrange memory from time to time to
make room for new segment or growing segment

e External fragmentation: wasted space between chunks

Solve Fragmentation: Paged Translation

Manage memory in fixed size units, or pages
Finding a free page is easy

— Bitmap allocation: 0011111100000001100

— Each bit represents one physical page frame

Each process has its own page table
— Stored in physical memory

Hardware registers

* pointer to page table start
* page table length

Paged Translation (Abstract)

Processor’s View Physical
Memory

Frame 0O

rasassaand Codw

E E.......................) Datao
Vpage Ol: Codel™ " : » Heap‘l
Vpage "I[..E ,,,,,,,,,,,, I ,,,,,,,,,,, > Code'l
sansssnissnnssandd ' > Heam
Data ; :« > Data‘l

Heap ,,,,,,,,,,,,,,,,,,,,,,,,,,,,, :
H —--a|Heap2

Stack| :

VPage Nl: Fresesstsrsnsisnnsnies »|Stacki

iesrrensrrnasransiannionesres > Stacko

Frame M

Paged Translation (Implementation)

Physical
Memory
Physical ll;rame ?
Address rame
3| Frame Offset |-
Processor : :
Virtual EPage Table s
Address Fréme Access "
Page # Offset .
ORI ey
Virtual
Address | | 1 e >
""""""""""" »| Page # Offset
Physical
., Address :
Frame Offset |«
Frame M

Process View

6o mm g O

r X - —

Page O

Page 1

Page 2

Physical Memory

Page Table

r X -~ -

OO ®@X>» T G MM

Frame O

Frame 1

Frame 2

Frame 3

Frame 4

Example

Comparison

Like segmentation, paging adds a level of
indirection

Page size is smaller than segment size
generally

What about translation overhead?

What about memory overhead (size) of paging
Vs. segmentation?

Paging Questions

* With paging, what is saved/restored on a
process context switch?

— Pointer to page table, size of page table

— Page table itself is in main memory
* What if page size is very small?

— Big page tables, lots of 1/0 (as we will see)
 What if page size is very large?

— Internal fragmentation: if we don’t need all of the
space inside a fixed size chunk

Paging and Copy on Write

 Can we share memory between processes?
— Set entries in both page tables to point to same page frames

— Need core map of page frames to track which processes are
pointing to which page frames (e.g., reference count): why?

* UNIX fork with copy on write
— Copy page table of parent into child process
— Mark all pages (in new and old page tables) as read-only
— Trap into kernel on write (in child or parent)
— Copy page
— Mark both as writeable
— Resume execution

Demand Paging/Fill On Demand

* Can | start running a program before its code is in
physical memory?
— Set all page table entries to invalid

— When a page is referenced for first time, kernel trap,
“page fault”

— Kernel brings page in from disk
— Resume execution

— Remaining pages can be transferred in the
background while program is running

Data Breakpoints

Please trace variable A
Mark page P containing A as read-only

If P is changed, trap into kernel, and see if A
actually changed?

Why is this better with paging vs. segmentation?

Page Table Issue

64 bit machines
Page table(s) can get huge
Need to address this

16 bit page size, 50 bits for pages, 250
entries in PT PER process!

Next Week

* Chapter 9 virtual memory
* Chapter 8; multi-level translation

