
Caching and Demand-Paged
Virtual Memory

Chapter 9 OSPP

Caching: Address Translation, and
Virtual Memory

• Caching

– Speed up address translation (TLB)

– Implement virtual memory (memory as a cache
for backing store): demand-paging

– Memory-mapped files

Definitions
• Cache

– Copy of data that is faster to access than the original
– Hit: if cache has copy
– Miss: if cache does not have copy

• Cache block
– Unit of cache storage (multiple memory locations)

• Temporal locality
– Programs tend to reference the same memory locations

multiple times
– Example: instructions in a loop

• Spatial locality
– Programs tend to reference nearby locations
– Example: data in a loop

Cache Concept (Read)

Retrieve

TLB and Page Table Translation

Memory Hierarchy

i7 has 8MB as shared 3rd level cache; 2nd level cache is per-core

Main Points

• Can we provide the illusion of near infinite
memory in limited physical memory?
– Demand-paged virtual memory

– Memory-mapped files

• How do we choose which page to replace?
– FIFO, MIN, LRU, LFU, Clock

• What types of workloads does caching work
for, and how well?
– Spatial/temporal locality vs. Zipf workloads

Hardware address translation
is a power tool

• Kernel trap on read/write to selected addresses

– Copy on write

– Fill on reference

– Zero on use

– Demand paged virtual memory

– Modified bit emulation

– Memory mapped files

– Use bit emulation

Demand Paging (Before)

Demand Paging (After)

Caching and Demand-Paged
Virtual Memory

Chapter 9 OSPP

Today

• Virtual memory

• Lab #2

Demand Paging – quick walk

1. TLB miss

2. Page table walk

3. Page fault (page invalid
in page table)

4. Trap to kernel

5. Convert virtual address
to file + offset

6. Allocate page frame
– Evict page if needed

7. Initiate disk block read
into page frame

8. Disk interrupt when
DMA complete

9. Mark page as valid

10. Resume process at
faulting instruction

11. TLB miss

12. Page table walk to fetch
translation

13. Execute instruction

One page table per process!

Allocating a Page Frame

• Select old page to evict – which one?

• Find all page table entries that refer to old page

– If page frame is shared

• Set each page table entry to invalid

• Remove any TLB entries

– Copies of now invalid page table entry

• Write changes on page back to disk, if
necessary

How do we know if page has been
modified?

• Every page table entry has some bookkeeping

– Has page been modified? Dirty bit.

• Set by hardware on store instruction

• In both TLB and page table entry

– Has page been recently used? In use bit.

• Set by hardware in page table entry

• Bookkeeping bits can be reset by the OS kernel

– When changes to page are flushed to disk

– To track whether page is recently used

Keeping Track of Page Modifications
(Before)

Keeping Track of Page Modifications
(After)

Virtual or Physical Dirty/Use Bits

• Most machines keep dirty/use bits in the page
table entry

• Physical page is

– Modified if any page table entry that points to it is
modified

– Recently used if any page table entry that points
to it is recently used

Tidbit: Emulating a Modified Bit

• Some processor archs. do not keep a modified bit per page
– Extra bookkeeping and complexity

• Kernel can emulate a modified bit:
– Set all clean pages as read-only
– On first write to page, trap into kernel
– Kernel sets modified bit, marks page as read-write
– Resume execution

• Kernel needs to keep track of both
– Current page table permission (e.g., read-only)
– True page table permission (e.g., writeable)

• Can also emulate a recently used bit

Memory-Mapped Files

• Explicit read/write system calls for files
– Data copied to user process using system call
– Application operates on data
– Data copied back to kernel using system call

• Memory-mapped files
– Open file as a memory segment
– Program uses load/store instructions on segment memory,

implicitly operating on the file
– Page fault if portion of file is not yet in memory
– Kernel brings missing blocks into memory, restarts

instruction
– mmap in Linux

Advantages to Memory-mapped Files

• Programming simplicity, esp for large files

– Operate directly on file, instead of copy in/copy out

• Zero-copy I/O

– Data brought from disk directly into page frame

• Pipelining

– Process can start working before all the pages are
populated (automatically)

• Interprocess communication

– Shared memory segment vs. temporary file

From Memory-Mapped Files to
Demand-Paged Virtual Memory

• Every process segment backed by a file on disk

– Code segment -> code portion of executable

– Data, heap, stack segments -> temp files

– Shared libraries -> code file and temp data file

– Memory-mapped files -> memory-mapped files

– When process ends, delete temp files

• Unified memory management across file
buffer and process memory

Memory is a Cache for Disk: Cache
Replacement Policy?

• On a cache miss, how do we choose which
entry to replace?
– Assuming the new entry is more likely to be used

in the near future

– In direct mapped caches, not an issue!

• Policy goal: reduce cache misses
– Improve expected case performance

– Also: reduce likelihood of very poor performance

A Simple Policy

• Random?

– Replace a random entry

• FIFO?

– Replace the entry that has been in the cache the
longest time

– What could go wrong?

FIFO in Action

Worst case for FIFO is if program strides through
memory that is larger than the cache

MIN

• MIN

– Replace the cache entry that will not be used for
the longest time into the future

– Optimality proof based on exchange: if evict an
entry used sooner, that will trigger an earlier
cache miss

– Can we know the future?

– Maybe: compiler might be able to help.

LRU, LFU

• Least Recently Used (LRU)
– Replace the cache entry that has not been used for the

longest time in the past

– Approximation of MIN

– Past predicts the future: code?

• Least Frequently Used (LFU)
– Replace the cache entry used the least often (in the recent

past)

– Important to focus on recent past: why?

– Mountain hut URL just visited vs. Katy Perry a few minutes ago

Belady’s Anomaly

More memory does worse! LRU does not suffer from this.

Caching and Demand-Paged
Virtual Memory

Chapter 9 OSPP

Today

• HW #3 out

• See on-line schedule for date changes

– Exam #1 is 11/9; Lab #2 extended (small changes posted)

• VM continued

• Multi-level

• Thursday: won’t cover all of memory hog paper

Lab #2

• Briefly

True LRU

• Hard to do in practice: why?

– Hardware just has a single reference bit

– Even if could store a clock value in the PT, would
have to somehow order the entries and/or go
through all of memory to determine LRU

Clock Algorithm: Estimating LRU

• Periodically, sweep through
all/some pages

• If page is unused, reclaim

(no chance)

• If page is used, mark as
unused

• remember clock hand for

next time

Nth Chance: Not Recently Used

• Instead of one bit per page, keep an integer
– notInUseSince: number of sweeps since last use

• Periodically sweep through all page frames
if (page is used) {

notInUseSince = 0;
} else if (notInUseSince < N) {

notInUseSince++;
} else {

reclaim page;
}

Paging Daemon

• Periodically run some version of clock/Nth
chance: background

• Goal to keep # of free frames > %

• Clean (write-back) and free frames as needed

Recap

• MIN is optimal

– replace the page or cache entry that will be used
farthest into the future

• LRU is an approximation of MIN

– For programs that exhibit spatial and temporal
locality

• Clock/Nth Chance is an approximation of LRU

– Bin pages into sets of “not recently used”

Working Set Model

• Working Set (WS): set of memory locations that need
to be cached for reasonable cache hit rate
– top: RES(ident) field (~ WS)

– Driven by locality

– Programs get whatever they need (to a point)

– Pages accessed in last t time or k accesses

– Uses some version of clock (conceptually): min-max WS

• Thrashing: when cache (i.e. memory) is too small
– S of WSi > Memory for all i running processes

Cache Working Set

Working set

Memory Hogs

• How many pages to give each process?

• Ideally their working set

• But a hog or rogue can steal pages

– For global page stealing, thrashing can cascade

• Solution: self-page

– Problem?

– Local solutions (e.g. multiple queues) are suboptimal

Lab #2: VM Page Replacement

Cannot change the
hardware

Can change the OS
(main.c)

Problem: you cannot modify the page table! Emulate.

Lab #2

• We provide page table and backing store; just use it.

• Study the code (i.e. the “mechanism”) figure it out!
– See: two memory-mapped files for VAS and PMEM and a disk

store file

• Memory-mapped I/O
– VAS is mapped to a “file” on backing store

• Emulating “states” by changing protections on memory-
mapped VAS (mprotect)

• Catch SIGSEGV in your user-level “OS” and take action

Hardware

• Emulate bits using memory protection fields

– PROT_READ: read (accessed)

– PROT_WRITE: written (dirty)

– PROT_NONE: no rights (valid)

Next Week

• Wrap up memory next week

– Caching, Address translation and a Paper to read

• Have a great weekend!

