Basic new idea
- Treat the stack like a new instruction set
- "Opcodes" are pointers to existing code
- Generalizes return-to-libc with more programmability

ret2pop (Müller)
- Take advantage of shellcode pointer already present on stack
- Rewrite intervening stack to treat the shellcode pointer like a return address
 - A long sequence of chained returns, one pop

Gadgets
- Basic code unit in ROP
- Any existing instruction sequence that ends in a return
- Found by (possibly automated) search
Another partial example

```
push %esi
mov $0x56,%dh
sbb $0xff,%al
inc %eax
or %al,%dh
movzbl 0x1c(%esi),%edx
incl 0x8(%eax)
```

```
0f b6 56 1c ff 40 08 c6
```

Overlapping x86 instructions

- Variable length instructions can start at any byte
- Usually only one intended stream

Where gadgets come from

- Possibilities:
 - Entirely intended instructions
 - Entirely unaligned bytes
 - Fall through from unaligned to intended
- Standard x86 return is only one byte, 0xc3

Building instructions

- String together gadgets into manageable units of functionality
- Examples:
 - Loads and stores
 - Arithmetic
 - Unconditional jumps
- Must work around limitations of available gadgets

Hardest case: conditional branch

- Existing jCC instructions not useful
- But carry flag CF is
- Three steps:
 1. Do operation that sets CF
 2. Transfer CF to general-purpose register
 3. Add variable amount to %esp

Further advances in ROP

- Can also use other indirect jumps, overlapping not required
- Automation in gadget finding and compilers
- In practice: minimal ROP code to allow transfer to other shellcode
Counterfeit OO Prog. (S&P'15)

- Idea: construct fake objects with pointers to real C++ vtables
- for (i = 0; i < nStudents; i++)
 students[i]->dropCourse(id);
- Overlapping object fields facilitate data flow

Anti-ROP: lightweight

- Check stack sanity in critical functions
- Check hardware-maintained log of recent indirect jumps (kBouncer)
- Unfortunately, exploitable gaps

Gaps in lightweight anti-ROP

- Three papers presented at 2014’s USENIX Security
- Hide / flush jump history
- Very long loop -> context switch
- Long “non-gadget” fragment
- (Later: call-preceded gadgets)

Outline

- Return-oriented programming (ROP)
- Control-flow integrity (CFI)
- More modern exploit techniques
- Announcements intermission
- Saltzer & Schroeder’s principles
- More secure design principles
- Software engineering for security
- Secure use of the OS

Basic CFI principle

- Each indirect jump should only go to a programmer-intended (or compiler-intended) target
- I.e., enforce call graph
- Often: identify disjoint target sets

Anti-ROP: still research

- Modify binary to break gadgets
- Fine-grained code randomization
- Beware of adaptive attackers (“JIT-ROP”)
- Next up: control-flow integrity
Approximating the call graph

- One set: all legal indirect targets
- Two sets: indirect calls and return points
- n sets: needs possibly-difficult points-to analysis

Target checking: classic

- Identifier is a unique 32-bit value
- Can embed in effectively-nop instruction
- Check value at target before jump
- Optionally add shadow stack

Target checking: classic

cmp [ecx], 12345678h
jne error_label
lea ecx, [ecx+4]
jmp ecx

Challenge 1: performance

- In CCS’05 paper: 16% avg., 45% max.
 - Widely varying by program
 - Probably too much for on-by-default
- Improved in later research
 - Common alternative: use tables of legal targets

Challenge 2: compatibility

- Compilation information required
- Must transform entire program together
- Can’t inter-operate with untransformed code

Recent advances: COTS

- Commercial off-the-shelf binaries
- CCFIR (Berkeley+PKU, Oakland’13): Windows
 - Use Windows ASLR information to find targets
- CFI for COTS Binaries (Stony Brook, USENIX’13): Linux
 - Keep copy of original binary, build translation table
Control-Flow Guard

- CFI-style defense now in latest Windows systems
- Compiler generates tables of legal targets
- At runtime, table managed by kernel, read-only to user-space

Coarse-grained counter-attack

- “Out of Control” paper, Oakland’14
- Limit to gadgets allowed by coarse policy
 - Indirect call to function entry
 - Return to point after call site ("call-preceded")
- Use existing direct calls to VirtualProtect
- Also used against kBouncer

Code-pointer Integrity (CPI, OSDI’14)

- Memory safety would block attacks, but expensive
 - Spatial safety: e.g., no buffer overflows
 - Temporal safety: e.g., no use after free
- Idea: apply memory safety only to objects containing code pointers
 - Similar benefits to good CFI
- Challenge: low-overhead memory isolation

Control-flow bending counter-attack

- Control-flow attacks that still respect the CFG
- Especially easy without a shadow stack
- Printf-oriented programming generalizes format-string attacks

Outline

- Return-oriented programming (ROP)
- Control-flow integrity (CFI)
- More modern exploit techniques
- Announcements intermission
- Saltzer & Schroeder’s principles
- More secure design principles
- Software engineering for security
- Secure use of the OS

Target #1: web browsers

- Widely used on desktop and mobile platforms
- Easily exposed to malicious code
- JavaScript is useful for constructing fancy attacks
Heap spraying

- How to take advantage of uncontrolled jump?
- Maximize proportion of memory that is a target
- Generalize NOP sled idea, using benign allocator
- Under W\text{eX}, can’t be code directly

JIT spraying

- Can we use a JIT compiler to make our sleds?
- Exploit unaligned execution:
 - Benign but weird high-level code (bitwise ops. with constants)
 - Benign but predictable JITted code
 - Becomes sled + exploit when entered unaligned

JIT spray example

\begin{verbatim}
25 90 90 90 3c and $0x3c909090,%eax
\end{verbatim}

90 nop
90 nop
3c 25 cmp $0x25,%al
90 nop
90 nop
3c 25 cmp $0x25,%al

Use-after-free

- Low-level memory error of choice in web browsers
- Not as easily audited as buffer overflows
- Can lurk in attacker-controlled corner cases
- JavaScript and Document Object Model (DOM)

Sandboxes and escape

- Chrome NaCl: run untrusted native code with SFI
 - Extra instruction-level checks somewhat like CFI
- Each web page rendered in own, less-trusted process
- But not easy to make sandboxes secure
 - While allowing functionality
Chained bugs in Pwnium 1

- Google-run contest for complete
 Chrome exploits
 - First edition in spring 2012
- Winner 1: 6 vulnerabilities
- Winner 2: 14 bugs and “missed
 hardening opportunities”
- Each got $60k, bugs promptly fixed

Outline

- Return-oriented programming (ROP)
- Control-flow integrity (CFI)
- More modern exploit techniques
- Announcements intermission
- Saltzer & Schroeder’s principles
- More secure design principles
- Software engineering for security
- Secure use of the OS

Research with Prof. Kangjie Lu

- Prof. Kangjie Lu is interested in
 security, program analysis, and
 operating systems
- Starting a project on Linux kernel bugs
- For more details see forum post

Supplemental office hours tomorrow

- Tomorrow (Thursday), 11am-noon in
 4-225E

Alternative Saltzer & Schroeder

- Not a replacement for reading the real
 thing, but:
 - http://emergentchaos.com/
 - The security principles of saltzer-and-schroeder
- Security Principles of Saltzer and
 Schroeder, illustrated with scenes from
 Star Wars (Adam Shostack)

Deadlines reminder

- Exercise set 1: Thursday night
- HA1 week 3: Friday night
Outline
Return-oriented programming (ROP)
Control-flow integrity (CFI)
More modern exploit techniques
Announcements intermission
Saltzer & Schroeder’s principles
More secure design principles
Software engineering for security
Secure use of the OS

Economy of mechanism
- Security mechanisms should be as simple as possible
- Good for all software, but security software needs special scrutiny

Fail-safe defaults
- When in doubt, don’t give permission
- Whitelist, don’t blacklist
- Obvious reason: if you must fail, fail safe
- More subtle reason: incentives

Complete mediation
- Every mode of access must be checked
 - Not just regular accesses: startup, maintenance, etc.
- Checks cannot be bypassed
 - E.g., web app must validate on server, not just client

Open design
- Security must not depend on the design being secret
- If anything is secret, a minimal key
 - Design is hard to keep secret anyway
 - Key must be easily changeable if revealed
 - Design cannot be easily changed

Open design: strong version
- “The design should not be secret”
- If the design is fixed, keeping it secret can’t help attackers
- But an unscrutinized design is less likely to be secure
Separation of privilege

- Real world: two-person principle
- Direct implementation: separation of duty
- Multiple mechanisms can help if they are both required
 - Password and wheel group in Unix

Least privilege

- Programs and users should have the most limited set of powers needed to do their job
- Presupposes that privileges are suitably divisible
 - Contrast: Unix root

Least privilege: privilege separation

- Programs must also be divisible to avoid excess privilege
- Classic example: multi-process OpenSSH server
- N.B.: Separation of privilege ≠ privilege separation

Least common mechanism

- Minimize the code that all users must depend on for security
- Related term: minimize the Trusted Computing Base (TCB)
- E.g.: prefer library to system call; microkernel OS

Psychological acceptability

- A system must be easy to use, if users are to apply it correctly
- Make the system’s model similar to the user’s mental model to minimize mistakes

Sometimes: work factor

- Cost of circumvention should match attacker and resource protected
 - E.g., length of password
- But, many attacks are easy when you know the bug
Sometimes: compromise recording

- Recording a security failure can be almost as good as preventing it
- But, few things in software can’t be erased by root

Outline

- Return-oriented programming (ROP)
- Control-flow integrity (CFI)
- More modern exploit techniques
- Announcements intermission
- Saltzer & Schroeder’s principles
- More secure design principles
- Software engineering for security
- Secure use of the OS

Pop quiz

- What’s the type of the return value of `getchar`?
- Why?

Separate the control plane

- Keep metadata and code separate from untrusted data
- Bad: format string vulnerability
- Bad: old telephone systems

Defense in depth

- Multiple levels of protection can be better than one
- Especially if none is perfect
- But, many weak security mechanisms don’t add up

Canonicalize names

- Use unique representations of objects
- E.g. in paths, remove ., .., extra slashes, symlinks
- E.g., use IP address instead of DNS name
Fail-safe / fail-stop

- If something goes wrong, behave in a way that's safe
- Often better to stop execution than continue in corrupted state
- E.g., better segfault than code injection

Outline

- Return-oriented programming (ROP)
- Control-flow integrity (CFI)
- More modern exploit techniques
- Announcements intermission
- Saltzer & Schroeder's principles
- More secure design principles
- Software engineering for security
- Secure use of the OS

Modularity

- Divide software into pieces with well-defined functionality
- Isolate security-critical code
 - Minimize TCB, facilitate privilege separation
 - Improve auditability

Minimize interfaces

- Hallmark of good modularity: clean interface
- Particularly difficult:
 - Safely implementing an interface for malicious users
 - Safely using an interface with a malicious implementation

Appropriate paranoia

- Many security problems come down to missing checks
- But, it isn't possible to check everything continuously
- How do you know when to check what?

Invariant

- A fact about the state of a program that should always be maintained
- Assumed in one place to guarantee in another
- Compare: proof by induction
Pre- and postconditions

- Invariants before and after execution of a function
 - Precondition: should be true before call
 - Postcondition: should be true after return

Dividing responsibility

- Program must ensure nothing unsafe happens
- Pre- and postconditions help divide that responsibility without gaps

When to check

- At least once before any unsafe operation
- If the check is fast
- If you know what to do when the check fails
- If you don’t trust
 - your caller to obey a precondition
 - your callee to satisfy a postcondition
 - yourself to maintain an invariant

Sometimes you can’t check

- Check that \(p \) points to a null-terminated string
- Check that \(fp \) is a valid function pointer
- Check that \(x \) was not chosen by an attacker

Error handling

- Every error must be handled
 - I.e., program must take an appropriate response action
- Errors can indicate bugs, precondition violations, or situations in the environment

Error codes

- Commonly, return value indicates error if any
- Bad: may overlap with regular result
- Bad: goes away if ignored
Exceptions

- Separate from data, triggers jump to handler
- Good: avoid need for manual copying, not dropped
- May support: automatic cleanup (finally)
- Bad: non-local control flow can be surprising

Testing and security

- “Testing shows the presence, not the absence of bugs” – Dijkstra
- Easy versions of some bugs can be found by targeted tests:
 - Buffer overflows: long strings
 - Integer overflows: large numbers
 - Format string vulnerabilities: %x

Fuzz testing

- Random testing can also sometimes reveal bugs
- Original ‘fuzz’ (Miller): program
 ‹/dev/urandom
- Modern: small random changes to a benign input

Outline

- Return-oriented programming (ROP)
- Control-flow integrity (CFI)
- More modern exploit techniques
- Announcements intermission
- Saltzer & Schroeder’s principles
- More secure design principles
- Software engineering for security
- Secure use of the OS

Avoid special privileges

- Require users to have appropriate permissions
 - Rather than putting trust in programs
- Anti-pattern 1: setuid/setgid program
- Anti-pattern 2: privileged daemon
- But, sometimes unavoidable (e.g., email)

One slide on setuid/setgid

- Unix users and process have a user id number (UID) as well as one or more group IDs
- Normally, process has the IDs of the user who starts it
- A setuid program instead takes the UID of the program binary
Don't use shells or Tcl

- ... in security-sensitive applications
- String interpretation and re-parsing are very hard to do safely
- Eternal Unix code bug: path names with spaces

Prefer file descriptors

- Maintain references to files by keeping them open and using file descriptors, rather than by name
- References same contents despite file system changes
- Use openat, etc., variants to use FD instead of directory paths

Prefer absolute paths

- Use full paths (starting with /) for programs and files
- $PATH under local user control
- Initial working directory under local user control
 - But FD-like, so can be used in place of openat if missing

Prefer fully trusted paths

- Each directory component in a path must be write protected
- Read-only file in read-only directory can be changed if a parent directory is modified

Don't separate check from use

- Avoid pattern of e.g., access then open
 - Instead, just handle failure of open
 - You have to do this anyway
 - Multiple references allow races
 - And access also has a history of bugs

Be careful with temporary files

- Create files exclusively with tight permissions and never reopen them
 - See detailed recommendations in Wheeler
- Not quite good enough: reopen and check matching device and inode
 - Fails with sufficiently patient attack
Give up privileges

- Using appropriate combinations of set*id functions
 - Alas, details differ between Unix variants
- Best: give up permanently
- Second best: give up temporarily
- Detailed recommendations: Setuid Demystified (USENIX’02)

Whitelist environment variables

- Can change the behavior of called program in unexpected ways
- Decide which ones are necessary
 - As few as possible
- Save these, remove any others

Next time

- Recommendations from the author of qmail
- A variety of isolation mechanisms