
CSci 5271
Introduction to Computer Security

Day 15: Cryptography part 2: public-key
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Block ciphers and modes of operation

Hash functions and MACs

Announcements

Building a secure channel

Public-key crypto basics

Public key encryption and signatures

From last time

Goal: bootstrap from small secret key
to secure channel
Approach: use good crypto primitives

Observation: easier to design than to
break

Considered stream ciphers, didn’t see
ones we liked

Another primitive: block cipher

Modes of operation

How to build a cipher for
arbitrary-length data from a block
cipher
Many approaches considered

For some reason, most have three-letter
acronyms

More recently: properties susceptible
to relative proof

ECB

Electronic CodeBook

Split into blocks, apply cipher to each
one individually

Leaks equalities between plaintext
blocks

Almost never suitable for general use

Do not use ECB



CBC

Cipher Block Chaining

Ci = EK(Pi � Ci-1)

Probably most popular in current
systems

Plaintext changes propagate forever,
ciphertext changes only two blocks

CBC: getting an IV

C0 is called the initialization vector (IV)
Must be known for decryption

IV should be random-looking
To prevent first-block equalities from
leaking (lesser version of ECB problem)

Common approaches
Generate at random
Encrypt a unique value (“nonce”)

Stream modes: OFB, CTR

Output FeedBack: produce keystream
by repeatedly encrypting the IV

Danger: collisions lead to repeated
keystream

Counter: produce from encryptions of
an incrementing value

Recently becoming more popular: allows
parallelization and random access

Outline

Block ciphers and modes of operation

Hash functions and MACs

Announcements

Building a secure channel

Public-key crypto basics

Public key encryption and signatures

Ideal model

Ideal crypto hash function:
pseudorandom function

Arbitrary input, fixed-size output

Simplest kind of elf in box, theoretically
very convenient

But large gap with real systems: better
practice is to target particular
properties

Kinds of attacks

Pre-image, “inversion”: given y, find x
such that H(x) = y

Second preimage, targeted collision:
given x, H(x), find x 0 6= x such that
H(x 0) = H(x)

(Free) collision: find x1, x2 such that
H(x1) = H(x2)



Birthday paradox and attack

There are almost certainly two people
in this classroom with the same
birthday

n people have
�
n
2

�
= �(n2) pairs

So only about
p
365 expected for

collision

“Birthday attack” finds collisions in any
function

Security levels

For function with k-bit output:

Preimage and second preimage should
have complexity 2k

Collision has complexity 2k=2

Conservative: use hash function twice
as big as block cipher

Though if you’re paranoid, cipher blocks
can collide too

Not cryptographic hash functions

The ones you probably use for hash
tables

CRCs, checksums

Output too small, but also not resistant
to attack

E.g., CRC is linear and algebraically nice

Short hash function history

On the way out: MD5 (128 bit)
Flaws known, collision-finding now routine

SHA(-0): first from NIST/NSA, quickly
withdrawn

Likely flaw discovered 3 years later

SHA-1: fixed SHA-0, 160-bit output.

260 collision attack described in 2013
First public collision found (using 6.5 kCPU
yr) in 2017

Length extension problem

MD5, SHA1, etc., computed left to right
over blocks
Can sometimes compute H(a k b) in
terms of H(a)

k means bit string concatenation

Makes many PRF-style constructions
insecure

SHA-2 and SHA-3

SHA-2: evolutionary, larger,
improvement of SHA-1

Exists as SHA-f224; 256; 384; 512g
But still has length-extension problem

SHA-3: chosen recently in open
competition like AES

Formerly known as Keccak, official
standard Aug. 2015
New design, fixes length extension
Not yet very widely used



MAC: basic idea

Message authentication code: similar to
hash function, but with a key

Adversary without key cannot forge
MACs

Strong definition: adversary cannot
forge anything, even given
chosen-message MACs on other
messages

CBC-MAC construction

Same process as CBC encryption, but:
Start with IV of 0
Return only the last ciphertext block

Both these conditions needed for
security

For fixed-length messages (only), as
secure as the block cipher

HMAC construction

H(K kM): insecure due to length
extension

Still not recommended: H(M k K),
H(K k M k K)

HMAC: H(K� a k H(K� b kM))

Standard a = 0x5c
�, b = 0x36

�

Probably most widely used MAC

Outline

Block ciphers and modes of operation

Hash functions and MACs

Announcements

Building a secure channel

Public-key crypto basics

Public key encryption and signatures

Upcoming: HA2

Hands-on assignment 2:
Relates to network and web security
No week-by-week patching
Groups can but need not be same as HA1

You will need to delete your HA1 VMs

Schedule changes next week

My Tuesday office hour will be canceled

Wednesday will be a guest lecture



Outline

Block ciphers and modes of operation

Hash functions and MACs

Announcements

Building a secure channel

Public-key crypto basics

Public key encryption and signatures

Session keys

Don’t use your long term password,
etc., directly as a key

Instead, session key used for just one
channel

In practice, usually obtained with
public-key crypto

Separate keys for encryption and
MACing

Order of operations

Encrypt and MAC (“in parallel”)
Safe only under extra assumptions on the
MAC

Encrypt then MAC
Has cleanest formal safety proof

MAC then Encrypt
Preferred by FS&K for some practical
reasons
Can also be secure

Authenticated encryption modes

Encrypting and MACing as separate
steps is about twice as expensive as
just encrypting
“Authenticated encryption” modes do
both at once

Recent (circa 2000) innovation, many
variants

NIST-standardized and unpatented:
Galois Counter Mode (GCM)

Ordering and message numbers

Also don’t want attacker to be able to
replay or reorder messages

Simple approach: prefix each message
with counter

Discard duplicate/out-of-order
messages

Padding

Adjust message size to match multiple
of block size

To be reversible, must sometimes make
message longer

E.g.: for 16-byte block, append either 1,
or 2 2, or 3 3 3, up to 16 “16” bytes



Padding oracle attack

Have to be careful that decoding of
padding does not leak information

E.g., spend same amount of time
MACing and checking padding, whether
or not padding is right

Remote timing attack against CBC TLS
published 2013

Don’t actually reinvent the wheel

This is all implemented carefully in
OpenSSL, SSH, etc.

Good to understand it, but rarely
sensible to reimplement it

You’ll probably miss at least one of
decades worth of attacks

Outline

Block ciphers and modes of operation

Hash functions and MACs

Announcements

Building a secure channel

Public-key crypto basics

Public key encryption and signatures

Pre-history of public-key crypto

First invented in secret at GCHQ

Proposed by Ralph Merkle for UC
Berkeley grad. security class project

First attempt only barely practical
Professor didn’t like it

Merkle then found more sympathetic
Stanford collaborators named Diffie and
Hellman

Box and locks analogy

Alice wants to send Bob a gift in a
locked box

They don’t share a key
Can’t send key separately, don’t trust UPS
Box locked by Alice can’t be opened by
Bob, or vice-versa

Box and locks analogy

Alice wants to send Bob a gift in a
locked box

They don’t share a key
Can’t send key separately, don’t trust UPS
Box locked by Alice can’t be opened by
Bob, or vice-versa

Math perspective: physical locks
commute



Protocol with clip art Protocol with clip art

Protocol with clip art Protocol with clip art

Public key primitives

Public-key encryption (generalizes
block cipher)

Separate encryption key EK (public) and
decryption key DK (secret)

Signature scheme (generalizes MAC)
Separate signing key SK (secret) and
verification key VK (public)

Modular arithmetic

Fix modulus n, keep only remainders
mod n

mod 12: clock face; mod 232: unsigned
int

+, -, and � work mostly the same

Division: see Exercise Set 1

Exponentiation: efficient by square and
multiply



Generators and discrete log

Modulo a prime p, non-zero values and
� have a nice (“group”) structure

g is a generator if g0; g; g2; g3; : : :
cover all elements

Easy to compute x 7! gx

Inverse, discrete logarithm, hard for
large p

Diffie-Hellman key exchange

Goal: anonymous key exchange

Public parameters p, g; Alice and Bob
have resp. secrets a, b

Alice!Bob: A = ga (mod p)

Bob!Alice: B = gb (mod p)

Alice computes Ba = gba = k

Bob computes Ab = gab = k

Relationship to a hard problem

We’re not sure discrete log is hard
(likely not even NP-complete), but it’s
been unsolved for a long time

If discrete log is easy (e.g., in P), DH is
insecure

Converse might not be true: DH might
have other problems

Categorizing assumptions

Math assumptions unavoidable, but can
categorize

E.g., build more complex scheme,
shows it’s “as secure” as DH because it
has the same underlying assumption

Commonly “decisional” (DDH) and
“computational” (CDH) variants

Key size, elliptic curves

Need key sizes �10 times larger then
security level

Attacks shown up to about 768 bits

Elliptic curves: objects from higher math
with analogous group structure

(Only tenuously connected to ellipses)

Elliptic curve algorithms have smaller
keys, about 2� security level

Outline

Block ciphers and modes of operation

Hash functions and MACs

Announcements

Building a secure channel

Public-key crypto basics

Public key encryption and signatures



General description

Public-key encryption (generalizes
block cipher)

Separate encryption key EK (public) and
decryption key DK (secret)

Signature scheme (generalizes MAC)
Separate signing key SK (secret) and
verification key VK (public)

RSA setup

Choose n = pq, product of two large
primes, as modulus

n is public, but p and q are secret

Compute encryption and decryption
exponents e and d such that

Med =M (mod n)

RSA encryption

Public key is (n; e)

Encryption of M is C =Me (mod n)

Private key is (n; d)

Decryption of C is Cd =Med =M

(mod n)

RSA signature

Signing key is (n; d)

Signature of M is S =Md (mod n)

Verification key is (n; e)

Check signature by Se =Mde =M

(mod n)

Note: symmetry is a nice feature of
RSA, not shared by other systems

RSA and factoring

We’re not sure factoring is hard (likely
not even NP-complete), but it’s been
unsolved for a long time

If factoring is easy (e.g., in P), RSA is
insecure

Converse might not be true: RSA might
have other problems

Homomorphism

Multiply RSA ciphertexts ) multiply
plaintexts

This homomorphism is useful for some
interesting applications
Even more powerful: fully homomorphic
encryption (e.g., both + and �)

First demonstrated in 2009; still very
inefficient



Problems with vanilla RSA

Homomorphism leads to
chosen-ciphertext attacks

If message and e are both small
compared to n, can compute M1=e

over the integers

Many more complex attacks too

Hybrid encryption

Public-key operations are slow

In practice, use them just to set up
symmetric session keys

+ Only pay RSA costs at setup time

- Breaks at either level are fatal

Padding, try #1

Need to expand message (e.g., AES
key) size to match modulus

PKCS#1 v. 1.5 scheme: prepend 00 01
FF FF .. FF

Surprising discovery
(Bleichenbacher’98): allows adaptive
chosen ciphertext attacks on SSL

Modern “padding”

Much more complicated encoding
schemes using hashing, random salts,
Feistel-like structures, etc.

Common examples: OAEP for
encryption, PSS for signing

Progress driven largely by improvement
in random oracle proofs

Simpler padding alternative

“Key encapsulation mechanism” (KEM)

For common case of public-key crypto
used for symmetric-key setup

Also applies to DH

Choose RSA message r at random
mod n, symmetric key is H(r)

- Hard to retrofit, RSA-KEM insecure if e
and r reused with different n

Box and locks revisited

Alice and Bob’s box scheme fails if an
intermediary can set up two sets of
boxes

Man-in-the-middle (or middleperson)
attack

Real world analogue: challenges of
protocol design and public key
distribution



Next time

Building crypto into more complex
protocols


