CSci 527
Introduction to Computer Security
Day 15: Cryptography part 2: public-key

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Block ciphers and modes of operation
Hash functions and MACs
Announcements

Building a secure channel

Public-key crypto basics

Public key encryption and signatures

From last time

) Goal: bootstrap from small secret key
to secure channel
) Approach: use good crypto primitives
® Observation: easier to design than to
break

) Considered stream ciphers, didn't see
ones we liked

©) Another primitive: block cipher

Modes of operation

) How to build a cipher for

arbitrary-length data from a block
cipher

) Many approaches considered

® For some reason, most have three-letter
acronyms

) More recently: properties susceptible

to relative proof

ECB

) Electronic CodeBook

) Split into blocks, apply cipher to each
one individually

) Leaks equalities between plaintext
blocks

©) Aimost never suitable for general use

Do not use ECB

CBC

©) Cipher Block Chaining

0 Ci =Ex(Pi® Ciq)

) Probably most popular in current
systems

) Plaintext changes propagate forever,
ciphertext changes only two blocks

CBC: getting an IV

£ C, is called the initialization vector (IV)
® Must be known for decryption
©) IV should be random-looking
® To prevent first-block equalities from
leaking (lesser version of ECB problem)
) Common approaches

® Generate at random
® Encrypt a unique value (“nonce”)

Stream modes: OFB, CTR

) Output FeedBack: produce keystream
by repeatedly encrypting the IV

® Danger: collisions lead to repeated
keystream

) Counter: produce from encryptions of
an incrementing value

® Recently becoming more popular: allows
parallelization and random access

Outline

Hash functions and MACs

I[deal model

) Ideal crypto hash function:

pseudorandom function
® Arbitrary input, fixed-size output

©) Simplest kind of elf in box, theoretically
very convenient

©) But large gap with real systems: better
practice is to target particular
properties

Kinds of attacks

) Pre-image, “inversion”: given y, find x
such that H(x) =y

) Second preimage, targeted collision:
given x, H(x), find x’ # x such that
H(x') = H(x)

) (Free) collision: find x;, x, such that
H(x1) = H(x2)

Birthday paradox and attack

) There are almost certainly two people
in this classroom with the same
birthday

© n people have () = ©(n?) pairs

£ So only about /365 expected for
collision

) "Birthday attack” finds collisions in any
function

Security levels

) For function with k-bit output:

) Preimage and second preimage should
have complexity 2*

) Collision has complexity 2%/2

) Conservative: use hash function twice

as big as block cipher
® Though if you're paranoid, cipher blocks
can collide too

Not cryptographic hash functions

) The ones you probably use for hash
tables

) CRCs, checksums

) Output too small, but also not resistant
to attack

£ Eg, CRC is linear and algebraically nice

Short hash function history
£) On the way out: MD5 (128 bit)

® Flaws known, collision-finding now routine
) SHA(-O): first from NIST/NSA, quickly
withdrawn
® Likely flaw discovered 3 years later
) SHA-!: fixed SHA-O, 160-bit output.

) 2°0 collision attack described in 2013

m First public collision found (using 6.5 kCPU
yr) in 2017

Length extension problem

©) MD5, SHA|, etc.,, computed left to right
over blocks
©) Can sometimes compute H(a || b) in
terms of H(a)
® || means bit string concatenation
©) Makes many PRF-style constructions
insecure

SHA-2 and SHA-3

£) SHA-2: evolutionary, larger,
improvement of SHA-1
m Exists as SHA-{224, 256,384,512}
® But still has length-extension problem
) SHA-3: chosen recently in open
competition like AES
® Formerly known as Keccak, official
standard Aug. 2015
® New design, fixes length extension
® Not yet very widely used

MAC: basic idea

) Message authentication code: similar to
hash function, but with a key

) Adversary without key cannot forge
MACs

©) Strong definition: adversary cannot
forge anything, even given
chosen-message MACs on other
messages

CBC-MAC construction

£) Same process as CBC encryption, but:

® Start with IV of O
® Return only the last ciphertext block

) Both these conditions needed for
security

) For fixed-length messages (only), as
secure as the block cipher

HMAC construction

© H(K || M): insecure due to length
extension

® Still not recommended: H(M || K),
HK [M [K)

OHMAC. H(K@ a || HK®b || M))
©) Standard a = 0x5c¢*, b = 0x36*
) Probably most widely used MAC

Outline

Announcements

Upcoming: HA2

) Hands-on assignment 2:

® Relates to network and web security
® No week-by-week patching
® Groups can but need not be same as HAI

©) You will need to delete your HA1 VMs

Schedule changes next week

©) My Tuesday office hour will be canceled
) Wednesday will be a quest lecture

Outline

Building a secure channel

Session keys

©) Don't use your long term password,
etc, directly as a key

©) Instead, session key used for just one
channel

©) In practice, usually obtained with
public-key crypto

) Separate keys for encryption and
MACing

Order of operations

) Encrypt and MAC (“in parallel”)

m Safe only under extra assumptions on the
MAC

©) Encrypt then MAC
® Has cleanest formal safety proof
) MAC then Encrypt

® Preferred by FS&K for some practical
reasons
® Can also be secure

Authenticated encryption modes

©) Encrypting and MACing as separate
steps is about twice as expensive as
just encrypting

) “Authenticated encryption” modes do
both at once

® Recent (circa 2000) innovation, many
variants

©) NIST-standardized and unpatented:

Galois Counter Mode (GCM)

Ordering and message numbers

) Also don't want attacker to be able to
replay or reorder messages

) Simple approach: prefix each message
with counter

) Discard duplicate/out-of-order
messages

Padding

©) Adjust message size to match multiple
of block size

©) To be reversible, must sometimes make
message longer

©) E.g. for 16-byte block, append either T,
or22,or333 upto16 "16" bytes

Padding oracle attack

) Have to be careful that decoding of
padding does not leak information

0 Eg, spend same amount of time
MACing and checking padding, whether
or not padding is right

©) Remote timing attack against CBC TLS
published 2013

Don't actually reinvent the wheel

£) This is all implemented carefully in
OpenSSL, SSH, etc.

£) Good to understand it, but rarely
sensible to reimplement it

©) You'll probably miss at least one of
decades worth of attacks

Outline

Public-key crypto basics

Pre-history of public-key crypto

©) First invented in secret at GCHQ

) Proposed by Ralph Merkle for UC

Berkeley grad. security class project
® First attempt only barely practical
® Professor didn't like it

) Merkle then found more sympathetic
Stanford collaborators named Diffie and

Hellman

Box and locks analogy

) Alice wants to send Bob a qift in a

locked box
® They don't share a key
® Can't send key separately, don't trust UPS
® Box locked by Alice can't be opened by
Bob, or vice-versa

Box and locks analogy

) Alice wants to send Bob a gift in a

locked box
® They don't share a key
® Can't send key separately, don't trust UPS
® Box locked by Alice can't be opened by
Bob, or vice-versa

£) Math perspective: physical locks
commute

Protocol with clip art

Alice Bob

Alice Bob

Protocol with clip art

Alice Bob

t%

Alice Bob

Protocol with clip art

Alice Bob

Alice Bob

Protocol with clip art

Alice Bob
o
‘A
'l’l
—
B\\"
Bob

Alice

Public key primitives

) Public-key encryption (generalizes
block cipher)

® Separate encryption key EK (public) and
decryption key DK (secret)

©) Signature scheme (generalizes MAC)

m Separate signing key SK (secret) and
verification key VK (public)

Modular arithmetic

£) Fix modulus n, keep only remainders
mod n

® mod 12: clock face; mod 232 unsigned
int

©) +, — and x work mostly the same
) Division: see Exercise Set 1

) Exponentiation: efficient by square and
multiply

Generators and discrete log

£) Modulo a prime p, non-zero values and
x have a nice ("group”) structure

© g is a generator if ¢°, g, g%, g%, ...
cover all elements
) Easy to compute x — g~

) Inverse, discrete logarithm, hard for
large p

Diffie-Hellman key exchange

©) Goal: anonymous key exchange

) Public parameters p, g; Alice and Bob
have resp. secrets a, b

£) Alice—Bob: A = g* (mod p)
) Bob—Alice: B = g® (mod p)
) Alice computes B¢ = g** =k
) Bob computes A® = g% =k

Relationship to a hard problem

©) We're not sure discrete log is hard
(likely not even NP-complete), but it's
been unsolved for a long time

0 If discrete log is easy (e.g, in P), DH is
insecure

) Converse might not be true: DH might
have other problems

Categorizing assumptions

) Math assumptions unavoidable, but can
categorize

©) E.g., build more complex scheme,
shows it's “as secure” as DH because it
has the same underlying assumption

) Commonly “decisional” (DDH) and
“computational” (CDH) variants

Key size, elliptic curves

) Need key sizes ~10 times larger then
security level
® Attacks shown up to about 768 bits
©) Elliptic curves: objects from higher math
with analogous group structure
® (Only tenuously connected to ellipses)
©) Elliptic curve algorithms have smaller
keys, about 2x security level

Outline

Public key encryption and signatures

General description

) Public-key encryption (generalizes
block cipher)
® Separate encryption key EK (public) and
decryption key DK (secret)
) Signature scheme (generalizes MAC)
® Separate signing key SK (secret) and
verification key VK (public)

RSA setup

) Choose n = pq, product of two large
primes, as modulus

£ n is public, but p and g are secret

) Compute encryption and decryption
exponents e and d such that

M =M (mod n)

RSA encryption

) Public key is (n, e)

) Encryption of M is C = M¢ (mod n)

©) Private key is (n, d)

o) Decryption of C is C4 = M =M
(mod n)

RSA signature

©) Signing key is (n, d)

) Signature of M is S = M? (mod n)

) Verification key is (n, e)

) Check signature by S¢ = M =M
(mod n)

) Note: symmetry is a nice feature of
RSA, not shared by other systems

RSA and factoring

©) We're not sure factoring is hard (likely
not even NP-complete), but it's been
unsolved for a long time

) If factoring is easy (eg. in P), RSA is
insecure

) Converse might not be true: RSA might
have other problems

Homomorphism

©) Multiply RSA ciphertexts = multiply
plaintexts

£) This homomorphism is useful for some
interesting applications

£) Even more powerful: fully homomorphic
encryption (e.g, both + and x)

® First demonstrated in 2009; still very
inefficient

Problems with vanilla RSA

) Homomorphism leads to
chosen-ciphertext attacks

©) If message and e are both small
compared to n, can compute M'/¢
over the integers

) Many more complex attacks too

Hybrid encryption

) Public-key operations are slow

£ In practice, use them just to set up
symmetric session keys

+ Only pay RSA costs at setup time
— Breaks at either level are fatal

Padding, try #1

©) Need to expand message (e.qg., AES
key) size to match modulus

) PKCS#1 v. 1.5 scheme: prepend 00 O1
FF FF .. FF

) Surprising discovery
(Bleichenbacher'98). allows adaptive
chosen ciphertext attacks on SSL

Modern “padding”

) Much more complicated encoding
schemes using hashing, random salts,
Feistel-like structures, etc.

) Common examples: OAEP for
encryption, PSS for signing

©) Progress driven largely by improvement
in random oracle proofs

Simpler padding alternative

) "Key encapsulation mechanism” (KEM)

) For common case of public-key crypto
used for symmetric-key setup
® Also applies to DH
) Choose RSA message r at random
mod n, symmetric key is H(r)
— Hard to retrofit, RSA-KEM insecure if e
and r reused with different n

Box and locks revisited

) Alice and Bob's box scheme fails if an

intermediary can set up two sets of
boxes

® Man-in-the-middle (or middleperson)
attack

©) Real world analogue: challenges of
protocol design and public key
distribution

Next time

) Building crypto into more complex
protocols

