Many methods require to approximate the original data (matrix) by a low rank matrix before attempting to solve the original problem.

- Regularization methods require the solution of a least-squares linear system $Ax = b$ approximately in the dominant singular space of A.
- The Latent Semantic Indexing (LSI) method in information retrieval, performs the “query” in the dominant singular space of A.
- Methods utilizing Principal Component Analysis, e.g. Face Recognition.
Commonality: Approximate A (or A^\dagger) by a lower rank approximation A_k (using dominant singular space) before solving original problem.

This approximation captures the main features of the data while getting rid of noise and redundancy.

Note: Common misconception: ‘we need to reduce dimension in order to reduce computational cost’. In reality: using less information often yields better results. This is the problem of overfitting.

Good illustration: Information Retrieval (IR)
Information Retrieval: Vector Space Model

Given: a collection of documents (columns of a matrix A) and a query vector q.

Collection represented by an $m \times n$ term by document matrix with $a_{ij} = L_{ij}G_iN_j$

Queries (‘pseudo-documents’) q are represented similarly to a column
Vector Space Model - continued

- Problem: find a column of A that best matches q
- Similarity metric: angle between the column and q - Use cosines:

$$\frac{|c^T q|}{\|c\|_2 \|q\|_2}$$

- To rank all documents we need to compute

$$s = A^T q$$

- $s =$ similarity vector.
- Literal matching – not very effective.
Use of the SVD

Many problems with literal matching: polysemy, synonymy, ...

Need to extract intrinsic information – or underlying “semantic” information –

Solution (LSI): replace matrix A by a low rank approximation using the Singular Value Decomposition (SVD)

$$A = U \Sigma V^T \rightarrow A_k = U_k \Sigma_k V_k^T$$

U_k: term space, V_k: document space.

Refer to this as Truncated SVD (TSVD) approach
New similarity vector:

\[s_k = A_k^T q = V_k \Sigma_k U_k^T q \]

Issues:

- Problem 1: How to select \(k \)?
- Problem 2: computational cost (memory + computation)
- Problem 3: updates [e.g. google data changes all the time]
- Not practical for very large sets
LSI : an example

%% D1 : INFANT & TODDLER first aid
%% D2 : BABIES & CHILDREN’s room for your HOME
%% D3 : CHILD SAFETY at HOME
%% D4 : Your BABY’s HEALTH and SAFETY
%% D5 : From INFANT to TODDLER
%% D6 : BABY PROOFING basics
%% D7 : Your GUIDE to easy rust PROOFING
%% D8 : Beanie BABIES collector’s GUIDE
%% D9 : SAFETY GUIDE for CHILD PROOFING your HOME

%% Source: Berry and Browne, SIAM., ’99

➤ Number of documents: 8

➤ Number of terms: 9
Raw matrix (before scaling).

\[
\begin{array}{cccccccc}
| d1 & d2 & d3 & d4 & d5 & d6 & d7 & d8 |
\end{array}
\]

\[
\begin{array}{cccccccc}
| 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 |
| 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 |
| 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 |
| 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 |
| 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 |
| 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 |
\end{array}
\]

Get the answer to the query Child Safety, so

\[
q = \begin{bmatrix}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{bmatrix}
\]

using cosines and then using LSI with \(k = 3 \).
Dimension reduction

Dimensionality Reduction (DR) techniques pervasive to many applications

➢ Often main goal of dimension reduction is not to reduce computational cost. Instead:

• Dimension reduction used to reduce noise and redundancy in data
• Dimension reduction used to discover patterns (e.g., supervised learning)

➢ Techniques depend on desirable features or application: Preserve angles? Preserve distances? Maximize variance? ..
The problem

- Given \(d \ll m \) find a mapping \(\Phi : x \in \mathbb{R}^m \rightarrow y \in \mathbb{R}^d \)
- Mapping may be explicit (e.g., \(y = V^T x \))
- Or implicit (nonlinear)

Practically: Find a low-dimensional representation \(Y \in \mathbb{R}^{d \times n} \) of \(X \in \mathbb{R}^{m \times n} \).

- Two classes of methods: (1) projection techniques and (2) nonlinear implicit methods.
Example: Digit images (a sample of 30)
A few 2-D ‘reductions’:

PCA – digits: 0 – 4

LLE – digits: 0 – 4

K-PCA – digits: 0 – 4

ONPP – digits: 0 – 4

(articles) – SVDapp
Projection-based Dimensionality Reduction

Given: a data set \(X = [x_1, x_2, \ldots, x_n] \), and \(d \) the dimension of the desired reduced space \(Y \).

Want: a linear transformation from \(X \) to \(Y \)

\[
X \in \mathbb{R}^{m \times n}, \quad V \in \mathbb{R}^{m \times d}, \quad Y = V^T X, \quad Y \in \mathbb{R}^{d \times n}
\]

- \(m \)-dimens. objects \((x_i) \) ‘flattened’ to \(d \)-dimens. space \((y_i) \)

Problem: Find the best such mapping (optimization) given that the \(y_i \)'s must satisfy certain constraints

(articles) – SVDapp
Principal Component Analysis (PCA)

- PCA: find V (orthogonal) so that projected data $Y = V^T X$ has maximum variance

- Maximize over all orthogonal $m \times d$ matrices V:
 \[
 \sum_i \|y_i - \frac{1}{n} \sum_j y_j\|^2 = \cdots = \text{Tr} \left[V^T \bar{X} \bar{X}^T V\right]
 \]

Where: $\bar{X} = [\bar{x}_1, \cdots, \bar{x}_n]$ with $\bar{x}_i = x_i - \mu$, $\mu =$ mean.

Solution:

$V = \{\text{dominant eigenvectors}\}$ of the covariance matrix

- i.e., Optimal $V =$ Set of left singular vectors of \bar{X} associated with d largest singular values.
Show that \(\overline{X} = X(I - \frac{1}{n}ee^T) \) (here \(e = \text{vector of all ones} \)). What does the projector \((I - \frac{1}{n}ee^T) \) do?

Show that solution \(V \) also minimizes ‘reconstruction error’ ..

\[
\sum_i \| \overline{x}_i - VV^T\overline{x}_i \|^2 = \sum_i \| \overline{x}_i - V\overline{y}_i \|^2
\]

.. and that it also maximizes \(\sum_{i,j} \| y_i - y_j \|^2 \)
Matrix Completion Problem

Consider a table of movie ratings. You want to predict missing ratings by assuming commonality (low rank matrix).

<table>
<thead>
<tr>
<th>given data</th>
<th>predictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>movie</td>
<td>Paul</td>
</tr>
<tr>
<td>Title-1</td>
<td>-1</td>
</tr>
<tr>
<td>Title-2</td>
<td>4</td>
</tr>
<tr>
<td>Title-3</td>
<td>-3</td>
</tr>
<tr>
<td>Title-4</td>
<td>x</td>
</tr>
<tr>
<td>Title-5</td>
<td>3</td>
</tr>
<tr>
<td>Title-6</td>
<td>-2</td>
</tr>
</tbody>
</table>

Minimize \(\| (X - A)_{\text{mask}} \|^2_F + 4 \| X \|_* \)

“minimize sum-of-squares of deviations from known ratings plus sum of singular values of solution (to reduce the rank).”