Inner products and Norms

Inner product of 2 vectors

Inner product of 2 vectors x and y in \mathbb{R}^n:

$$x_1y_1 + x_2y_2 + \cdots + x_ny_n \text{ in } \mathbb{R}^n$$

Notation: (x, y) or $y^T x$

For complex vectors

$$(x, y) = x_1\bar{y}_1 + x_2\bar{y}_2 + \cdots + x_n\bar{y}_n \text{ in } \mathbb{C}^n$$

Note: $(x, y) = y^H x$
Properties of Inner Product:

- \((x, y) = \overline{(y, x)}\).
- \((αx, y) = α \cdot (x, y)\).
- \((x, x) \geq 0\) is always real and non-negative.
- \((x, x) = 0\) iff \(x = 0\) (for finite dimensional spaces).

Given \(A \in \mathbb{C}^{m \times n}\) then

\[
(Ax, y) = (x, A^H y) \quad \forall x \in \mathbb{C}^n, \forall y \in \mathbb{C}^m
\]
Vector norms

Norms are needed to measure lengths of vectors and closeness of two vectors. Examples of use: Estimate convergence rate of an iterative method; Estimate the error of an approximation to a given solution; ...

A vector norm on a vector space \mathbb{X} is a real-valued function on \mathbb{X}, which satisfies the following three conditions:

1. $\|x\| \geq 0$, $\forall x \in \mathbb{X}$, and $\|x\| = 0$ iff $x = 0$.
2. $\|\alpha x\| = |\alpha|\|x\|$, $\forall x \in \mathbb{X}$, $\forall \alpha \in \mathbb{C}$.
3. $\|x + y\| \leq \|x\| + \|y\|$, $\forall x, y \in \mathbb{X}$.

Third property is called the triangle inequality.
Important example: Euclidean norm on $\mathbb{X} = \mathbb{C}^n$,

$$\|x\|_2 = (x, x)^{1/2} = \sqrt{|x_1|^2 + |x_2|^2 + \ldots + |x_n|^2}$$

Show that when Q is orthogonal then $\|Qx\|_2 = \|x\|_2$

Most common vector norms in numerical linear algebra: special cases of the Hölder norms (for $p \geq 1$):

$$\|x\|_p = \left(\sum_{i=1}^{n} |x_i|^p \right)^{1/p}$$

Find out (bbl search) how to show that these are indeed norms for any $p \geq 1$ (Not easy for 3rd requirement!)
Property:

Limit of $\|x\|_p$ when $p \to \infty$ exists:

$$\lim_{p \to \infty} \|x\|_p = \max_{i=1}^{n} |x_i|$$

Defines a norm denoted by $\|\cdot\|_\infty$.

The cases $p = 1$, $p = 2$, and $p = \infty$ lead to the most important norms $\|\cdot\|_p$ in practice. These are:

\[
\begin{align*}
\|x\|_1 &= |x_1| + |x_2| + \cdots + |x_n|, \\
\|x\|_2 &= \left[|x_1|^2 + |x_2|^2 + \cdots + |x_n|^2\right]^{1/2}, \\
\|x\|_\infty &= \max_{i=1,\ldots,n} |x_i|.
\end{align*}
\]
The Cauchy-Schwartz inequality (important) is:

$$|(x, y)| \leq \|x\|_2 \|y\|_2.$$

When do you have equality in the above relation?

Expand $(x + y, x + y)$. What does the Cauchy-Schwarz inequality imply?

The Hölder inequality (less important for $p \neq 2$) is:

$$|(x, y)| \leq \|x\|_p \|y\|_q$$

with \(\frac{1}{p} + \frac{1}{q} = 1\).
Equivalence of norms:

In finite dimensional spaces \((\mathbb{R}^n, \mathbb{C}^n, \ldots)\) all norms are ‘equivalent’: if \(\phi_1\) and \(\phi_2\) are two norms then there is a constant \(\alpha\) such that,

\[
\phi_1(x) \leq \alpha \phi_2(x)
\]

How can you prove this result?

We can bound one norm in terms of another:

\[
\beta \phi_2(x) \leq \phi_1(x) \leq \alpha \phi_2(x)
\]

Show that for any \(x\):

\[
\frac{1}{\sqrt{n}} \|x\|_1 \leq \|x\|_2 \leq \|x\|_1
\]

What are the “unit balls” \(B_p = \{x \mid \|x\|_p \leq 1\}\) associated with the norms \(\|\cdot\|_p\) for \(p = 1, 2, \infty\), in \(\mathbb{R}^2\)?
A sequence of vectors $x^{(k)}$, $k = 1, \ldots, \infty$ converges to a vector x with respect to the norm $\| \cdot \|$ if, by definition,

$$\lim_{k \to \infty} \| x^{(k)} - x \| = 0$$

Important point: because all norms in \mathbb{R}^n are equivalent, the convergence of $x^{(k)}$ w.r.t. a given norm implies convergence w.r.t. any other norm.

Notation:

$$\lim_{k \to \infty} x^{(k)} = x$$
Example: The sequence

\[x^{(k)} = \begin{pmatrix}
1 + 1/k \\
\frac{k}{k + \log_2 k} \\
\frac{1}{k}
\end{pmatrix} \]

converges to

\[x = \begin{pmatrix}
1 \\
1 \\
0
\end{pmatrix} \]

Note: Convergence of \(x^{(k)} \) to \(x \) is the same as the convergence of each individual component \(x_i^{(k)} \) of \(x^{(k)} \) to the corresponding component \(x_i \) of \(x \).
Matrix norms

- Can define matrix norms by considering $m \times n$ matrices as vectors in \mathbb{R}^{mn}. These norms satisfy the usual properties of vector norms, i.e.,

1. $\|A\| \geq 0$, $\forall A \in \mathbb{C}^{m \times n}$, and $\|A\| = 0$ iff $A = 0$
2. $\|\alpha A\| = |\alpha| \|A\|$, $\forall A \in \mathbb{C}^{m \times n}$, $\forall \alpha \in \mathbb{C}$
3. $\|A + B\| \leq \|A\| + \|B\|$, $\forall A, B \in \mathbb{C}^{m \times n}$.

- However, these will lack (in general) the right properties for composition of operators (product of matrices).

- The case of $\|\cdot\|_2$ yields the Frobenius norm of matrices.
Given a matrix A in $\mathbb{C}^{m \times n}$, define the set of matrix norms

$$\|A\|_p = \max_{x \in \mathbb{C}^n, \ x \neq 0} \frac{\|Ax\|_p}{\|x\|_p}.$$

These norms satisfy the usual properties of vector norms (see previous page).

The matrix norm $\| . \|_p$ is induced by the vector norm $\| . \|_p$.

Again, important cases are for $p = 1, 2, \infty$.
A fundamental property of matrix norms is consistency

\[\|AB\|_p \leq \|A\|_p \|B\|_p. \]

[Also termed “sub-multiplicativity”]

Consequence: \[\|A^k\|_p \leq \|A\|^k_p\]

\(A^k \) converges to zero if any of its \(p \)-norms is < 1

[Note: sufficient but not necessary condition]
The Frobenius norm of a matrix is defined by

\[\| A \|_F = \left(\sum_{j=1}^{n} \sum_{i=1}^{m} |a_{ij}|^2 \right)^{1/2}. \]

Same as the 2-norm of the column vector in \(\mathbb{C}^{mn} \) consisting of all the columns (respectively rows) of \(A \).

This norm is also consistent [but not induced from a vector norm]
Compute the Frobenius norms of the matrices

\[
\begin{pmatrix}
1 & 1 \\
1 & 0 \\
3 & 2
\end{pmatrix}
\quad \begin{pmatrix}
1 & 2 & -1 \\
-1 & \sqrt{5} & 0 \\
-1 & 1 & \sqrt{2}
\end{pmatrix}
\]

Prove that the Frobenius norm is consistent [Hint: Use Cauchy-Schwartz]

Define the ‘vector 1-norm’ of a matrix \(A \) as the 1-norm of the vector of stacked columns of \(A \). Is this norm a consistent matrix norm?

[Hint: Result is true – Use Cauchy-Schwarz to prove it.]
Expressions of standard matrix norms

Recall the notation: (for square $n \times n$ matrices)

\[\rho(A) = \max |\lambda_i(A)|; \quad Tr(A) = \sum_{i=1}^{n} a_{ii} = \sum_{i=1}^{n} \lambda_i(A) \]

where $\lambda_i(A)$, $i = 1, 2, \ldots, n$ are all eigenvalues of A.

\[\|A\|_1 = \max_{j=1,\ldots,n} \sum_{i=1}^{m} |a_{ij}|, \]
\[\|A\|_{\infty} = \max_{i=1,\ldots,m} \sum_{j=1}^{n} |a_{ij}|, \]
\[\|A\|_2 = \left[\rho(A^H A) \right]^{1/2} = \left[\rho(AA^H) \right]^{1/2}, \]
\[\|A\|_F = \left[Tr(A^H A) \right]^{1/2} = \left[Tr(AA^H) \right]^{1/2}. \]
Eigenvalues of $A^H A$ are real ≥ 0. Their square roots are singular values of A. To be covered later.

$\|A\|_2$ == the largest singular value of A and $\|A\|_F$ = the 2-norm of the vector of all singular values of A.

Compute the p-norm for $p = 1, 2, \infty, F$ for the matrix

$$A = \begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix}$$

Show that $\rho(A) \leq \|A\|$ for any matrix norm.
Is $\rho(A)$ a norm?

1. $\rho(A) = \|A\|_2$ when A is Hermitian ($A^H = A$). ▶️ True for this particular case...

2. ... However, not true in general. For

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},$$

we have $\rho(A) = 0$ while $A \neq 0$. Also, triangle inequality not satisfied for the pair A, and $B = A^T$. Indeed, $\rho(A + B) = 1$ while $\rho(A) + \rho(B) = 0$.
A few properties of the 2-norm and the F-norm

Let $A = uv^T$. Then $\|A\|_2 = \|u\|_2 \|v\|_2$

Prove this result

In this case $\|A\|_F =$??

For any $A \in \mathbb{C}^{m \times n}$ and unitary matrix $Q \in \mathbb{C}^{m \times m}$ we have

$$\|QA\|_2 = \|A\|_2; \quad \|QA\|_F = \|A\|_F.$$

Show that the result is true for any orthogonal matrix Q (Q has orthonormal columns), i.e., when $Q \in \mathbb{C}^{p \times m}$ with $p > m$

Let $Q \in \mathbb{C}^{n \times n}$. Do we have $\|AQ\|_2 = \|A\|_2$? $\|AQ\|_F = \|A\|_F$? What if $Q \in \mathbb{C}^{n \times p}$, with $p < n$?