Estimating condition numbers.

- Often we just want to get a lower bound for condition number (it is 'worse than ...').
- We want to estimate \(\|A\| \|A^{-1}\| \).
- The norm \(\|A\| \) is usually easy to compute but \(\|A^{-1}\| \) is not.
- We want: Avoid the expense of computing \(A^{-1} \) explicitly.

Idea:

- Select a vector \(v \) so that \(\|v\| = 1 \) but \(\|Av\| = \tau \) is small.
- Then: \(\|A^{-1}\| \geq 1/\tau \) (show why) and:
 \[\kappa(A) \geq \frac{\|A\|}{\tau} \]

Condition numbers and near-singularity

- \(1/\kappa \approx \) relative distance to nearest singular matrix.

Let \(A, B \) be two \(n \times n \) matrices with \(A \) nonsingular and \(B \) singular. Then

\[\frac{1}{\kappa(A)} \leq \frac{\|A - B\|}{\|A\|} \]

Proof: \(B \) singular \(\implies \exists x \neq 0 \) such that \(Bx = 0 \).

\[\|x\| = \|A^{-1}Ax\| \leq \|A^{-1}\| \|Ax\| = \|A^{-1}\| \|(A - B)x\| \leq \|A^{-1}\| \|A - B\| \|x\| \]

Divide both sides by \(\|x\| \times \kappa(A) = \|x\| \|A\| \|A^{-1}\| \implies \text{result. QED.} \]

Example:

Let \(A = \begin{pmatrix} 1 & 1 \\ 1 & 0.99 \end{pmatrix} \) and \(B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \)

Then \(\frac{1}{\kappa_1(A)} \leq \frac{0.01}{2} \implies \kappa_1(A) \geq \frac{2}{0.01} = 200. \)

- It can be shown that (Kahan)

\[\frac{1}{\kappa(A)} = \min_B \left\{ \frac{\|A - B\|}{\|A\|} \mid \det(B) = 0 \right\} \]
Estimating errors from residual norms

Let \(\tilde{x} \) an approximate solution to system \(Ax = b \) (e.g., computed from an iterative process). We can compute the residual norm:

\[
\|r\| = \|b - A\tilde{x}\|
\]

Question: How to estimate the error \(\|x - \tilde{x}\| \) from \(\|r\| \)?

- One option is to use the inequality
 \[
 \frac{\|x - \tilde{x}\|}{\|x\|} \leq \kappa(A) \frac{\|r\|}{\|b\|}.
 \]

- We must have an estimate of \(\kappa(A) \).

Proof of inequality.

First, note that \(A(x - \tilde{x}) = b - A\tilde{x} = r \). So:

\[
\|x - \tilde{x}\| = \|A^{-1}r\| \leq \|A^{-1}\| \|r\|
\]

Also note that from the relation \(b = Ax \), we get

\[
\|b\| = \|Ax\| \leq \|A\| \|x\| \implies \|x\| \geq \frac{\|b\|}{\|A\|}
\]

Therefore,

\[
\frac{\|x - \tilde{x}\|}{\|x\|} \leq \frac{\|A^{-1}\| \|r\|}{\|b\| / \|A\|} = \kappa(A) \frac{\|r\|}{\|b\|}
\]

Show that

\[
\frac{\|x - \tilde{x}\|}{\|x\|} \geq \frac{1}{\kappa(A)} \frac{\|r\|}{\|b\|}.
\]