A few properties of SPD matrices

- Diagonal entries of A are positive
- Recall: the k-th principal submatrix A_k is the $k \times k$ submatrix of A with entries a_{ij}, $1 \leq i, j \leq k$ (Matlab: $A(1:k, 1:k)$).
- Each A_k is SPD
- Consequence: $\text{Det}(A_k) > 0$ for $k = 1, \ldots, n$.
- For any $n \times k$ matrix X of rank k, the matrix X^TAX is SPD.
- The mapping $x, y \rightarrow (x, y)_A \equiv (Ax, y)$

defines a proper inner product on \mathbb{R}^n. The associated norm, denoted by $\|x\|_A$, is called the energy norm, or simply the A-norm:

$$\|x\|_A = (Ax, x)^{1/2} = \sqrt{x^TAX}$$

Related measure in Machine Learning, Vision, Statistics: the Mahalanobis distance between two vectors:

$$d_A(x, y) = \|x - y\|_A = \sqrt{(x - y)^T A(x - y)}$$

Appropriate distance (measured in # standard deviations) if x is a sample generated by a Gaussian distribution with covariance matrix A and center y.

Positive-Definite Matrices

- A real matrix is said to be positive definite if $(Au, u) > 0$ for all $u \neq 0 u \in \mathbb{R}^n$
- Let A be a real positive definite matrix. Then there is a scalar $\alpha > 0$ such that $(Au, u) \geq \alpha\|u\|^2_2$.
- Consider now the case of Symmetric Positive Definite (SPD) matrices.
- Consequence 1: A is nonsingular
- Consequence 2: the eigenvalues of A are (real) positive
The LDL^T and Cholesky factorizations

The LU factorization of an SPD matrix A exists

Let A = LU and D = diag(U) and set \(M \equiv (D^{-1}U)^T \).

Then

\[
A = LU = LD(D^{-1}U) = LDM^T
\]

Both L and M are unit lower triangular.

Consider \(L^{-1}AL^{-T} = D^T M^T L^{-T} \).

Matrix on the right is upper triangular. But it is also symmetric. Therefore \(M^T L^{-T} = I \) and so \(M = L \).

The diagonal entries of D are positive [Proof: consider \(L^{-1}AL^{-T} = D \)]. In the end:

\[
A = LDL^T = GG^T \text{ where } G = LD^{1/2}
\]

More terminology

- A matrix is Positive Semi-Definite if: \((Au, u) \geq 0\) for all \(u \in \mathbb{R}^n\)
- Eigenvvalues of symmetric positive semi-definite matrices are real nonnegative, i.e., ...
- ... A can be singular [If not, A is SPD]
- A matrix is said to be Negative Definite if \(-A\) is positive definite. Similar definition for Negative Semi-Definite
- A matrix that is neither positive semi-definite nor negative semi-definite is indefinite

Show that if \(A^T = A \) and \((Ax, x) = 0\) \(\forall x\) then \(A = 0 \)

Show: \(A \) is indefinite iff \(\exists x, y : (Ax, x)(Ay, y) < 0 \)

The LDL^T and Cholesky factorizations

Row-Cholesky (outer product form)

Scale the rows as the algorithm proceeds. Line 4 becomes

\[
a(i,:) := a(i,:) - [a(k, i)/\sqrt{a(k,k)}] \times \left[a(k,:) / \sqrt{a(k,k)} \right]
\]

ALGORITHM: 1. Outer product Cholesky

1. For \(k = 1 : n \) Do:
2. \hspace{1cm} A(k, k : n) = A(k, k : n) / \sqrt{A(k,k)} ;
3. \hspace{1cm} For \(i := k + 1 : n \) Do:
4. \hspace{2cm} A(i, i : n) = A(i, i : n) - A(k, i) \times A(k, i : n);
5. \hspace{1cm} End
6. \hspace{1cm} End

Result: Upper triangular matrix \(U \) such \(A = U^TU \).
Example:

\[
A = \begin{pmatrix}
1 & -1 & 2 \\
-1 & 5 & 0 \\
2 & 0 & 9
\end{pmatrix}
\]

- Is \(A \) symmetric positive definite?
- What is the \(LDL^T \) factorization of \(A \)?
- What is the Cholesky factorization of \(A \)?

- Column Cholesky

Let \(A = GG^T \) with \(G \) lower triangular. Then equate \(j \)-th columns:

\[
a(i, j) = \sum_{k=1}^{j} g(j, k)g^T(k, i) \rightarrow \]

\[
A(:, j) = \sum_{k=1}^{j} G(j, k)G(:, k) \\
= G(j, j)G(:, j) + \sum_{k=1}^{j-1} G(j, k)G(:, k) \rightarrow \\
G(j, j)G(:, j) = A(:, j) - \sum_{k=1}^{j-1} G(j, k)G(:, k)
\]

ALGORITHM : 2. Column Cholesky

1. For \(j = 1 : n \) do
2. For \(k = 1 : j - 1 \) do
3. \(A(j : n, j) = A(j : n, j) - A(j, k) \ast A(j : n, k) \)
4. EndDo
5. If \(A(j, j) \leq 0 \) ExitError("Matrix not SPD")
6. \(A(j, j) = \sqrt{A(j, j)} \)
7. \(A(j + 1 : n, j) = A(j + 1 : n, j)/A(j, j) \)
8. EndDo

- Try algorithm on:

\[
A = \begin{pmatrix}
1 & -1 & 2 \\
-1 & 5 & 0 \\
2 & 0 & 9
\end{pmatrix}
\]
Banded matrices

- Banded matrices arise in many applications.
- A has upper bandwidth q if $a_{ij} = 0$ for $j - i > q$.
- A has lower bandwidth p if $a_{ij} = 0$ for $i - j > p$.

Simplest case: tridiagonal

$p = q = 1$.

First observation: Gaussian elimination (no pivoting) preserves the initial banded form. Consider first step of Gaussian elimination:

1. For $i = 2 : n$ Do:
2. $a_{i1} := a_{i1}/a_{11}$ (pivots)
3. For $j := 2 : n$ Do:
4. $a_{ij} := a_{ij} - a_{i1} * a_{1j}$
5. End
6. End

If A has upper bandwidth q and lower bandwidth p then so is the resulting $[L/U]$ matrix.

Band form is preserved (induction)

Operation count?

What happens when partial pivoting is used?

If A has lower bandwidth p, upper bandwidth q, and if Gaussian elimination with partial pivoting is used, then the resulting U has upper bandwidth $p + q$. L has at most $p + 1$ nonzero elements per column (bandedness is lost).

Simplest case: tridiagonal

$p = q = 1$.

Example:

\[
A = \begin{pmatrix}
1 & 1 & 0 & 0 & 0 \\
1 & 2 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 0 \\
0 & 0 & 2 & 1 & 1 \\
0 & 0 & 0 & 2 & 1
\end{pmatrix}
\]